期刊文献+

三阶矩阵的平方根 被引量:1

On Square-rooting matrices of 3×3 matrices
下载PDF
导出
摘要 本文利用矩阵的特征值和Jordan标准形,给出了三阶矩阵的所有平方根。 In this paper we give the square - rooting matrices of 3 × 3 matrices by taking advantagesof of characteristic value and Jordan's normal form.
作者 周金土 楼玫
出处 《数学理论与应用》 2008年第2期31-37,共7页 Mathematical Theory and Applications
关键词 矩阵的平方根 特征值 约旦标准形 square- rooting of matrix characteristic value Jordan's normal form
  • 相关文献

参考文献4

二级参考文献12

  • 1Mackinnon N.four routes to matrix [J].Math Gaz,1989,73:135-136.
  • 2Sullvan D.On square-rooting matrices of 2 × 2 matrices[J].Math Gaz,1993,77:42-43.
  • 3Horn R A,Johnson C R.Matrix analysis[J].Cambridge U P,1985.
  • 4Tismenetsky M.The theory of matrices.2st ed.[M].New York: Academic Press,1985.
  • 5Lang S.Linear algebra.Second Edition[M].New York: Addison 2W Esley Pulishing Company,1970.
  • 6Sullvan D.On square 2 rooting matrices of 2 × 2 matrices[J].Math Gaz,1993,77:112-117
  • 7Hall J I.Another elementary approach to the Jordan form[J].Armer Math Monthly,1991,98:336-340.
  • 8Jacobson A.Basic algebra[M].San Francisco: W H Freeman and Company,1980: 423-427.
  • 9Horm R A,Johnson C R.matrix analysis[M].New York:Cambridge University Press,1985.
  • 10贾利新.再论二阶方阵和三角阵的平方根[J].河南科学,1998,16(4):389-392. 被引量:4

共引文献9

同被引文献12

  • 1Wang J. A Recurrent Neural Network for Real-Time Matrix Inversion [J]. Applied Mathematics and Computation, 1993, 55(1): 89-100.
  • 2Zhang Y, Jiang D, Wang J. A Recurrent Neural Network for Solving Sylvester Equation with Time-Varying Coefficients [J]. IEEE Transactions on Neural Networks, 2002, 13(5): 1053-1063.
  • 3Yi C, Zhang Y. Analogue Recurrent Neural Network for Linear Algebraic Equation Solving [J]. Electronics Letters, 2008, 44(8): 1078-1079.
  • 4Zhu H, Lei Z, Chin F P S. An Improved Square-Root Algorithm for BLAST [J]. IEEE Signal Processing Letters, 2004, 11 (9): 772-775.
  • 5Stewart R W, Chapman R. Fast Stable Kalman Filter Algorithms Utilising the Square Root [C]//Luk F T. Proceedings of International Conference on Acoustics, Speech, and Signal Processing, 1990.
  • 6Larin V B, Aliev F A. Construction of Square Root Factor for Solution of the Lyapunov Matrix Equation [J]. Systems & Control Letters, 1993, 20(2): 109-112.
  • 7Higham N J. Newton's Method for the Matrix Square Root [J]. Athematics of Computation, 1986, 46(174): 537-549.
  • 8Higham N J. Stable Iterations for the Matrix Square Root [J]. Numerical Algorithms, 1997, 15: 227-242.
  • 9Hasan M A, Hasan A A, Rahman S. Fixed Point Iterations for Computing Square Roots and the Matrix Sign Function of Complex Matrices [C]//Witten I H, Neal R M, Cleary J G. Proceedings of the 39th 1EEE Conference on Decision and Control, 2000.
  • 10Zhang Y, Leithead W E, Leith D J. Time-Series Gaussian Process Regression Based on Toeplitz Computation of O(N2) Operations and O(N)-Level Storage [C]//Camacho E F. Proceedings of the 44th IEEE Conference on Decision and Control, 2005.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部