期刊文献+

基于Kalman滤波器的二维运动目标跟踪

Object Tracking of 2D Image Motion Based on Kalman Filtering
下载PDF
导出
摘要 利用kalman滤波器结合递归最小二乘法(RLS)建立了一个基于模型的鲁棒跟踪器,该模型能够有效分割图像域内的目标,提取目标特征并在给定区域内实现连续跟踪。采用动态kalman滤波器自适应的更新目标模型的特征,实时的增加新的、稳定的图像特征,同时减少无效或影响较小的图像特征,随后由RLS来完成对既定特征目标的匹配搜寻。通过在FIRA Mirosot集控式足球机器人平台上的应用,该方法能够在规定区域内,有效的跟踪小球,且鲁棒性较强。 A novel tracking strategy which can robustly track an object within a fixed environment was proposed. A robust model--based tracker was defined using kalman filtering combined with recursive least squares (RLS). The tracking was done by fitting successively more elaborate models on the tracked region, and the segmentation was done by extracting the regions of the image that are consistent with the computed model of the target. A competitive and efficient dynamic kalman filter were adopted to adaptively update the object model by adding new stable features as well as deleting inactive features. Then the matching search of the feature object was achieved by RLS. The approach was tested on FIRA Mirosot and tested in the context of ball tracking in the FIRA domain. The results show that the proposed approach can obtain excellent ability of tracking and robustness.
出处 《石油化工高等学校学报》 EI CAS 2007年第3期8-11,共4页 Journal of Petrochemical Universities
基金 国家自然科学基金资助项目(60504017)
关键词 目标跟踪 扩展KALMAN滤波器 RLS Object tracking Extended kalman filter Recursive least squares (RLS)
  • 相关文献

参考文献8

  • 1Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-gaussian bayesian state estimation[J].IEEE proceedings-F,1993,140(2):107-113.
  • 2Rickard Karlsson,Niclas Bergman.Auxiliary particle filters for tracking a maneuvering target,Proc.of the 39th IEEE Conf.on decision and control[C].Sydney:[s.n.],2000:3891-3895.
  • 3Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking[J].IEEE transactions on signal processing,2002,50(2):174-188.
  • 4Farina A,Ristic B,Benvenuti D.Tracking a ballistic target:comparison of several nonlinear filters[J].IEEE transactions on aerospace and electronics systems,2002,38(3):854-867.
  • 5Neil Gordon.A hybrid bootstrap filter for target tracking in clutter[J].IEEE transactions on aerospace and electronics systems,1997,33 (1):353-358.
  • 6王建彬,纪玉波,李依令.基于多结构元素的数学形态学图像边缘检测[J].辽宁石油化工大学学报,2006,26(2):79-82. 被引量:16
  • 7Carlin B P,Polson N G,Stoffer D S.A monte carlo approach to nonnormal and nonlinear state-space modeling[J].Journal of the american statistical association,1992,87(418):493-500.
  • 8李阳,冯志鑫,宋岱才.再谈广义Z-矩阵及广义M-矩阵的若干性质[J].辽宁石油化工大学学报,2004,24(2):95-97. 被引量:3

二级参考文献15

  • 1陈虎,王守尊,周朝辉.基于数学形态学的图像边缘检测方法研究[J].工程图学学报,2004,25(2):112-115. 被引量:39
  • 2饶海涛,翁桂荣.基于数学形态学的图像边缘检测[J].苏州大学学报(自然科学版),2004,20(2):42-45. 被引量:23
  • 3闫德俊,孙杰.一种改进的金相图像处理自适应加权均值滤波方法[J].辽宁石油化工大学学报,2005,25(4):58-61. 被引量:6
  • 4章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 5程云鹏.矩阵论[M].西安:西北工业大学出版社,1998..
  • 6Cottle R W,Danzig G B. A generalization of the linear complementarity problem[J]. J. combin. theory,1970,(8): 79 - 80.
  • 7Mohan S R,Neogy S K,Sridhar R. The generalized linear complementarity problem revisited[J]. Math. pro. ,1996,749: 197 -218.
  • 8Mangasanam O L. Generalized linear complementarity probleems as linear programs[J].Oper.res.vefahren,1979,31:393-420.
  • 9崔屹.图像处理和分析—数学形态学方法及应用[M].北京:科学出版社,2000.
  • 10Pei S C, Chen F C. Hierarchical image representation by mathematical morphology subband decomposition [J]. Pattern recogit lett, 1995(16) :183- 192.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部