期刊文献+

基于均匀设计的粒子群优化算法参数设定 被引量:6

Parameter Establishment of Particle Swarm Optimization Algorithm Based on Uniform Design
下载PDF
导出
摘要 粒子群优化算法的参数设置通常是依靠经验和试验来确定,造成试验工作量大且难以得到最优的参数组合,影响了算法的使用。通过将粒子群优化算法基本模型的参数设定问题描述成均匀设计中多因素多水平的试验设计,从而能够用较少的试验很快设定算法参数的取值。仿真试验表明该方法的可行性和有效性。 In general the parameters of particle swarm optimization algorithm (PSO) are determined by experience and experiment. This leads to heavy work load and difficult to obtain the optimal combination of the parameters and affects the use of PSO. Uniform design method was used to convert the problem of parameter establishment into the experimental design of multi--factor and multilevel and reduce the work load of experiment greatly of simulation. Simulation results for the benchmark problems show that the proposed method is feasible and valid.
作者 高尚 陈建忠
出处 《石油化工高等学校学报》 EI CAS 2007年第3期12-15,共4页 Journal of Petrochemical Universities
基金 江苏省计算机信息处理技术重点实验室开放课题资助(KJS0601)
关键词 粒子群优化算法 均匀设计 参数 Particle swarm optimization Uniform design Parameter
  • 相关文献

参考文献12

  • 1Eberhart R C,Kennedy J.A new optimizer using particles swarm theory:Proc.sixth international symposium on micro machine and human science[C].Japan:Nagoya,1995:39-43.
  • 2Shi Y H,Eberhart R C.A modified particle swarm optimizer:IEEE international conference on evolutionary computation[C].Piscataway,N J:IEEE serrice center,1998:69-73.
  • 3李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:303
  • 4Kennedy J,Eberhart R.Particle swarm optimization:Proc.IEEE int.conf.on neural networks[C].Piscataway,N J:IEEE serrice center,1995:1942-1948.
  • 5Shi Yuhui,Eberhart R.Parameter selection in particle swarm optimization:Proc.of the 7th annual conf.on evolutionary programming[C].Washington D C:Springer-verlag,1998:591-600.
  • 6Suganthan P N.Particle swarm optimiser with neighbourhood operator:Proc.of the congress on evolutionary computation[C].Piscataway,N J:IEEE serrice center,1999:1958-1962.
  • 7Clerc M.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization:Proc.of the congress on evolutionary computation[C].Piscataway,N J:IEEE serrice center,1999:1951-1957.
  • 8Shi Yuhui,Eberhart R.Fuzzy adaptive particle swarm optimization:Proc.IEEE int.conf.on evolutionary computation[C].Piscataway,N J:IEEE serrice center,2001:101-106.
  • 9Ozcan E,Mohan C.Particle swarm optimization:Surfing the waves:Proc.of the congress on evolutionary computation[C].Piscataway,N J:IEEE serrice center,1999:1939-1944.
  • 10何大阔,王福利,张春梅.基于均匀设计的遗传算法参数设定[J].东北大学学报(自然科学版),2003,24(5):409-411. 被引量:32

二级参考文献19

  • 1刘士新,宋健海,唐加福.蚁群最优化——模型、算法及应用综述[J].系统工程学报,2004,19(5):496-502. 被引量:36
  • 2关中玉,宋桂菊.PID参数的均匀设计[J].自动化仪表,1993,14(4):13-16. 被引量:4
  • 3徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 4Soleh H A, Chelonah R. The design of the global navigation satellite system surveying networks using genetic algorithms[J ].Engineering Applicatiems of Artificial Intelligence , 2004, 17(1):111 - 122.
  • 5Tai Q. Dynamic genetic algorithm based on continuous neural networks for a kind of non-convex optimization problems[J].Applied Mathematics and Computation, 2004, 150 ( 3 ) : 811 -820.
  • 6Fang K T, Qin H. A note on construction of nearly uniform designs with large number of runs[J]. Statistics and Probability Letters, 2003,61 (2) :215 - 224.
  • 7Xu J X. Tan Y. Robust optimal design and convergence properties analysis of iterative learning oantrol approaches [ J ].Automuatica, 2002,38( 11 ) : 1867 - 1880.
  • 8Chen X G, Li X K. Application of uniform design and genetic algorithm in optimization of reversed-phase chrematographic separation [ J ]. Chemometrics and Intelligent Laboratory Systems, 2003,68(2):157- 166.
  • 9Hickemell F J. A generalized discrepancy and quadrature error bound[J]. Math Computation, 1998,67:299 - 322.
  • 10Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of Cooperation Agents[J].IEEE Trans on Systems, Man, and Cybernetics-Part B,1996, 26(1):29-41.

共引文献421

同被引文献39

  • 1何大阔,王福利,贾明兴.遗传算法初始种群与操作参数的均匀设计[J].东北大学学报(自然科学版),2005,26(9):828-831. 被引量:59
  • 2肖磊,张阿卜,徐文进.用MATLAB求解TSP问题的一种改进遗传算法[J].厦门理工学院学报,2005,13(4):38-42. 被引量:17
  • 3黄永青,梁昌勇,张祥德.基于均匀设计的蚁群算法参数设定[J].控制与决策,2006,21(1):93-96. 被引量:42
  • 4吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2006:258-262.
  • 5Grefenstette J J. Optimization of control parameters for genetic algorithms [J]. IEEE Transactions on SMC, 1986,16( 1 ) : 122 - 128.
  • 6Kennedy J, Eberhant R C. Particle swarm optimization [ C ]//Proceedings of the IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Service Center, 1995 : 1942-1948.
  • 7Lu Lin, Luo Qi, Liu Jun-yong, et al. An improved particle swarm optimization algorithm [ C ]//Proceedings of IEEE International Conference on Granular Computing. Piscat- away, NJ : IEEE Service Center ,2008:486-490.
  • 8Li Zhijie, Liu Xiangdong, Duan Xiao-dong, et al. An improved particle swarm algorithm for search optimization [ C]//Proceedings of IEEE International Conference on Intelligent Systems. Piscataway, NJ:IEEE Service Center, 2009 : 154-158.
  • 9邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005.
  • 10刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2006年:16-22 102-128

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部