期刊文献+

时域推进算法中TPM模型的奇异性研究

Research on Singularity of TPM in Marching-on-in-time Algorithm
下载PDF
导出
摘要 三角贴片模型(TPM)常用于研究电磁散射的时域推进算法中。但在计算矢量位函数和标量位函数的微分过程中,TPM模型将产生奇异点。本文详细分析了TPM模型奇异性问题的产生,并提出了处理奇异点的方法,给出的算例证明了该处理方法的有效性。 Triangular patch model (TPM) is usually employed in marching-on-in-time algorithm to analyze the scattered electromagnetic fields. When the vector potential function and the differential of the scalar potential function are computed, singular points would occur on TPM. This paper details the singularity analysis of TPM. A method is proposed to deal with all kinds of singular points. It proves the effectivity through an application example.
出处 《微波学报》 CSCD 北大核心 2006年第B06期124-127,共4页 Journal of Microwaves
关键词 时域推进算法 三角贴片模型(TPM) 奇异性 奇异点 Marching-on-in-fimealgorithm; TPM; Singularity; Singular point
  • 相关文献

参考文献11

  • 1C L Bennett, G F Ross. Time-domain electromagnetics and its applications. Proc IEEE, 1978, 66(3): 299- 318.
  • 2R G Mart in, A Salinas, A R Bretones. Timedomain integral equation methods for transient analysis. IEEE Antennas and Propagation Magazine, 1992, 34(3): 15- 22.
  • 3C L Bennett, H Mieras. Time domain scattering form open thin conducting surface. Radio Science, 1981,16(6): 1231 - 1239.
  • 4S M Rao, D R Wilton, A W Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propagat, 1982, 30(3): 409 - 418.
  • 5S M Ran, D R Wilton. Transient scattering by conducting surfaces of arbitrary shape. IEEE Trans Antennas Propagat, 1991, 39(1): 56-61.
  • 6D A Vechinski, S M Rao. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape. IEEE Trans Antennas Propagat, 1992, 40(6): 661-665.
  • 7K Aygun, B Shanker, A A Ergin, et al. A two-level plane wave time-domain algrithm for fast analysis of EMC/EMI problems. IEEE Trans Electromag Compat, 2002, 44(1): 152- 164.
  • 8B H Jung. Transient scattering from tree-dimensional conducting bodies by using magnetic field integral equation. J Electromagn Waves Appl, 2002, 16(1): 111 - 128.
  • 9B P Rynne, P D Smith. Stability of time marching algorithms for the electric field integral equation. J Electromagn Waves Appl, 1990, 4(12): 1181 - 1205.
  • 10P J Davies. Stability of time-marching numerical schemes for the electric field integral equation. J Electromagn, Waves Appl, 1994, 8(1): 85 - 114.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部