期刊文献+

基于RBF神经网络的换热管污垢热阻预测 被引量:5

Forecast of Fouling Resistance of Heat Exchange Pipe Based on RBF Neural Network
下载PDF
导出
摘要 建立了换热管污垢热阻监测实验系统,采用偏相关系数方法,筛选出与换热管污垢热阻形成关系密切的因素。采用 RBF 神经网络法,对换热管污垢热阻的变化趋势进行了预测,预测值与实验得到的实测值基本吻合,误差小。 The experimental system for monitoring fouling resistance of heat exchange pipe is established. The factors forming a close relation with fouling resistance of heat exchange pipe are screened by using partial correlation coefficient method. The variation trend of fouling resistance of heat exchange pipe is forecasted by RBF neural network. The forecasted value basically accords with the measured value obtained in experiments, with small error.
出处 《煤气与热力》 2008年第6期26-28,共3页 Gas & Heat
关键词 污垢热阻 换热管 偏相关系数 RBF神经网络 fouling resistance heat exchange pipe partial correlation coefficient RBF neural network
  • 相关文献

参考文献5

二级参考文献9

共引文献295

同被引文献44

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部