期刊文献+

基于模糊不确定性的自适应采样 被引量:5

Adaptive Sampling Based on Fuzzy Uncertainty
下载PDF
导出
摘要 提出一种用于Monte Carlo全局光照的自适应采样方法,使得合成图像时对每个像素采用不同的采样数量,以提高间接光照的表现效果,降低图像总体噪声水平.考虑到图像或像素噪声水平的评价具有内在的模糊不确定性,基于模糊理论,以像素样本光照为基本元素建立模糊集合,利用模糊集的模糊度提出一种新的像素噪声水平评价标准.在新评价标准的基础之上实施自适应采样,首先对像素进行少量采样,然后根据新标准评价其噪声水平,并有针对性地对噪声水平较高的像素使用较多的采样样本.通过大量实验,验证了文中方法比已有的自适应采样方法更好. An adaptive sampling technique to calculate the global illumination with Monte Carlo path tracing is presented. It takes different number of sampling for different pixel to enhance the indirect illumination and to reduce image noise. Based on the intrinsic fuzzy uncertainty in image noise estimation, we define a fuzzy set based on the initial sampling results for each pixel and propose a new noise metric by exploiting the idea of fuzziness defined in fuzzy set theory. With the proposed noise metric, we can perform efficient adaptive sampling to determine whether super sampling is needed or not for each pixel. Extensive experiment results show that our novel method can achieve significantly better results than presently existing algorithms.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第6期689-699,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60572169) 教育部留学回国人员科研启动基金(D4200407) 天津市应用基础研究计划面上项目(05YFJMJC09200)
关键词 模糊度 自适应采样 全局光照 MONTE Carlo光径跟踪 fuzziness adaptive sampling global illumination Monte Carlo path tracing
  • 相关文献

参考文献28

  • 1Pharr M, Humphreys G. Physically based rendering-from theory to implementation [M]. San Francisco:Morgan Kaufmann, 2004
  • 2Kajiya J T. The rendering equation [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Dallas, 1986, 143-150
  • 3Dutre P, Jensen H W, Arvo J, et al. State of the art in Monte Carlo global illumination [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, 2004: Course Notes# 4
  • 4Jensen H W. Realistic image synthesis using photon mapping [M]. Natick: A K Peters, 2001
  • 5Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision [M]. 2nd ed. Natick, Massachusetts: Brooks/Cole, Thomson Asia Pte Ltd, 2002
  • 6Pal S K. Fuzzy sets in image processing and recognition [C] //Proceedings of IEEE International Conference on Fuzzy Systems, San Diego, 1992:119-126
  • 7Whitted T. An improved illumination model for shaded display [J]. Communications of the ACM, 1980, 23(6) : 343 -349
  • 8Painter J, Sloan K. Antialiased ray tracing by adaptive progressive refinement [C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Boston, 1989: 281-288
  • 9Dippe M A Z, Wold E H. Antialiasing through stochastic sampling [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, San Francisco, 1985: 69-78
  • 10Mitchell D P. Generating antialiased images at low sampling densities [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, 1987: 65- 72

共引文献4

同被引文献53

  • 1Mitchell D P. Spectrally optimal sampling for distribution ray tracing [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York:ACM Press, 1991: 157-164.
  • 2Tamstorf R, Jensen H W. Adaptive sampling and bias estimation in path tracing [C] //Proceedings of the Eurographics Workshop on Rendering Techniques. London: Springer, 1997:285-296.
  • 3Ostromoukhov V. Sampling with polyominoes [J]. ACM Transactions on Graphics, 2007, 26(3) : Article No. 78.
  • 4Ostromoukhov V, Donohue C, Jodoin P M. Fast hierarchical importance sampling with blue noise properties [J]. ACM Transactions on Graphics, 2004, 23(3): 488-495.
  • 5Overbeck R S, Donner C, Ramamoorthi R. Adaptive wavelet rendering[J]. ACM Transactions on Graphics, 2009, 28(5) : Article No. 140.
  • 6Hachisuka T, Jarosz W, Weistroffer R P, et al. Multidimensional adaptive sampling and reconstruction for ray tracing [J]. ACM Transactions on Graphics, 2008, 27 (3) : Article No. 33.
  • 7Egan K, Tseng Y T, Holzschueh N, et al. Frequency analysis and sheared reconstruction for rendering motion blur [J]. ACM Transactions on Graphics, 2009, 28(3): Article No. 93.
  • 8Cook R L. Stochastic sampling in computer graphics [J]. ACM Transactions on Graphics, 1986, 5(1): 51-72.
  • 9Mitchell D P. Generating antialiased images at low sampling densities [C] //Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1987: 65-72.
  • 10Pharr M, Humphreys G. Physically based rendering: from theory to implementation [M]. San Francisco: Morgan Kaufmann: 2004.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部