期刊文献+

电网中3类典型扰动信号的检测方法 被引量:5

Detection of three typical disturbances in power system
下载PDF
导出
摘要 对小波分析技术在电力系统3类典型扰动信号(电压下凹、电压冲击、暂态高频振荡)识别的应用进行研究的基础上,针对目前所采用小波基对扰动信号进行定位时存在较大误差的特点,提出了运用具有无限可导性、双正交性和无频谱混叠的Meyer小波基函数对3类扰动进行小波分解,进而进行准确识别定位的新方法。对3类典型扰动信号运用该方法进行仿真试验,并将暂态高频振荡信号的分析结果与用db5小波基分析结果进行了比较,结果表明该方法具有更高的准确性。 The applications of wavelet analysis technique in the detection of three typical power system disturbances(voltage sag,voltage impulse and high-frequency transient oscillation) are analyzed, which shows that the orientation precision is insufficient. A detection method is presented, which applies a mother wavelet basis function(Meyer) with infinite differentiability, biorthogonality and non -overlapping frequency bands to identify the occurrence and duration of disturbances. Simulative test is carried out for three typical power system disturbances. Its detection result for transient high frequency oscillation is compared with that of db5 analysis,which shows this method has higher accuracy.
出处 《电力自动化设备》 EI CSCD 北大核心 2008年第6期74-77,共4页 Electric Power Automation Equipment
关键词 电能质量 小波分析 Meyer函数 畸变信号 随机过程 power quality wavelet analysis Meyer function distorted signal stochastic process
  • 相关文献

参考文献14

  • 1SIU H K,NGAN H W. Automatic power quality recognition system using wavelet analysis [ C ]//2004 IEEE International Conference on Electric Utility Deregulation,Restructuring and Power Technologies. Hong Kong,China..IEEE,2004:311 - 316.
  • 2ABDEL-GALIL T K,KAMEL M. Power quality disturbance classification using the inductive inference approach [J]. IEEE Transactions on Power Delivery,2004,19(4) : 1812- 1818.
  • 3BASU M,BASU B. Application of wavelet transform to Power Quality ( PQ ) disturbance analysis [ C ]//The 2nd International Conf on Power Electronics,Machines and Drives. Edinburgh,UK: [s.n.] ,2004:269- 273.
  • 4PANDA G,DASH K P,PRADHAN K A,et al. Data compression of power quality events using the slantlet transform [J]. IEEE Trans on Power Delivery,2002,17(2) :662- 667.
  • 5BORRAS D,CASTILLA M,MORENO N,et al. Wavelet and neural structure:a new tool for diagnostic of power system disturbances[J]. IEEE Trans on Industry Application,2001, 37(1) : 184-190.
  • 6EIMITWALLY A,FARGHAL S,KANDIL M,et al. Proposed wavelet neuro fuzzy combined system for power quality violations detection and diagnosis [J]. IEE Proc-Gener Transm Distrib, 2001,48(1):15-20.
  • 7HUANG Jiansheng,THONG N D. A neural fuzzy classifier for recognition of power quality disturbances[J]. IEEE Trans on Power Delivery,2002,17(2) :609 - 616.
  • 8DAVID B,MARK M. IEEE standards coordinating committee 22 -power quality annual report to the standards board [R]. New York, USA: [s.n.], 2002.
  • 9SURYA S,MACK G W,EDWARD P J,et al. Characterization of distribution power quality events with Fourier and wavelet transforms [ J ]. IEEE Transactions on Power Delivery,2000,15( 1 ) : 247 - 254.
  • 10ARRILLAGA J,BOLLEN M H J,WASTON N R. Power quality following deregulation [J ]. IEEE Trans on Power Delivery,2000, 15 (2) :246- 261.

二级参考文献32

共引文献17

同被引文献56

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部