摘要
为了提高查询效率,本文提出了一种利用位置对节点分群,通过历史查询的搜索反馈结果动态选择转发与实际位置相邻节点的算法(FP算法)。该算法通过计算邻居节点的兴趣相关度,定期调整邻居节点。算法分析和实验结果表明,与泛洪式算法相比本算法在搜索时间上改进约10%~40%,同时很好地控制了总的消息数和重复访问节点的比例,提高了查询效率。
In order to raise searching efficiency, this paper presents an algorithm that groups nodes based on their position and chooses to forward the searching demand to practically contiguous nodes dynamically according to their historical searching feedback results. Through calculating neighbor nodes' degree of interest correlation, the algorithm adjusts neighbor nodes regularly. The analysis of the algorithm and the results of experiments show that, compared to flooding algorithm, this algorithm improves performance in terms of seaching time to 10%-40% , as well as controls the amount of messages forwarded and the proportion of repeating visit nodes, so it improves the searching efficiency.
出处
《计算机科学》
CSCD
北大核心
2008年第6期43-45,共3页
Computer Science
基金
天津市自然科学基金项目(编号:06YFJMJC00100)
关键词
P2P
搜索算法
反馈
兴趣相关度
位置
P2P, Search algorithm, Feedback, Degree of interest correlation, Position