期刊文献+

超球体单类支持向量机的SMO训练算法 被引量:10

SMO Training Algorithm for Hyper-sphere One-class SVM
下载PDF
导出
摘要 由于One-class支持向量机能用于无监督学习,被广泛用于信息安全、图像识别等领域中。而超球体One-class支持向量机能生成一个合适的球体,将训练样本包含其中,故更适合于呈球形分布的样本学习。但由于超球体One-class支持向量机没有一种快速训练算法,使其在应用中受到限制。SMO算法成功地训练了标准SVM,其训练思想也可用于超球体One-class支持向量机的训练。本文提出了超球体One-class支持向量机的SMO训练算法,并对其空间和时间复杂度进行了分析。实验表明,这种算法能迅速、有效地训练超球体One-class支持向量机。 One-Class SVM, as an unsupervised learning algorithm, is used widely in the areas of information security and image recognition etc. Moreover, Hyper-Sphere One-Class SVM can product a right sphere including the training examples, so it is fit to learn the examples with sphere-shaped distribution. However, Hyper-Sphere One-Class SVM is limited in real applications because it lacks a fast training algorithm. Training standard SVM successfully, the idea of SMO algorithm can be used to train Hyper-Sphere One-Class SVM too. The SMO algorithm for Hyper-Sphere One- Class SVM is proposed, the space and time complexity degrees are also analyzed in this paper. As shown in our numeric experiments, the new algorithm can train Hyper-Sphere One-Class SVM precisely and efficiently.
出处 《计算机科学》 CSCD 北大核心 2008年第6期178-180,共3页 Computer Science
关键词 无监督学习 超球体One-class支持向量机 SMO训练算法 Unsupervised learning, Hyper-sphere one-class SVM,SMO algorithm
  • 相关文献

参考文献5

  • 1Scholkopf B, Burges C, Vapnik V. Extracting support data for a given task[C]//Fayyad U M, Uthurusamy R, eds. Proceedings, First International Conference on Knowledge Discovery & Data Mining. Menlo Park, CA:AAAI Press, 1995
  • 2Tax D M J, Duin R P W. Data domain description by support vectors[C]//Verleysen M, ed. Proceedings ESANN, Brussels, 1999:251 - 256
  • 3Scholkopf B, Platt J, Shawe-Taylor J A S, et al. Estimating the support of a highdimenslonal distribution[J]. Neural Computation, 1990,13 : 7
  • 4Platt J. Fast training of support vector machines using sequential minimal optimization [M]//Scholkopf B, Burges C, Smola A,eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press,1999:185-208
  • 5http://www. its. uci. edu/-mlearn/MLRepository. html

同被引文献104

引证文献10

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部