期刊文献+

基于多维自组织特征映射的聚类算法研究 被引量:8

Study of Algorithms of Clustering Based on Multi-dimensional Self-organizing Feature Mapping
下载PDF
导出
摘要 作为神经网络的一种方法,自组织特征映射在数据挖掘、模式分类和机器学习中得到了广泛应用。本文详细讨论了自组织特征映射的聚类算法的工作原理和具体实现算法。通过系统仿真实验分析,SOFMF算法很好地克服了许多聚类算法存在的问题,在时间复杂度上具有良好的性能。 As a method of neural network, the self-organizing feature mapping(SOFM) is an excellent approach for data mining, pattern classification and machine learning. The theory and algorithm of SOFM are discussed in detail in this article. Simultaneously analyze and summarize this algorithm, overcome the insufficiency of many clustering algorithms, be able to find clusters in different shapes, be non-sensitive to the input data sequence, process noise data and multi-dimensional data well, and have multi-resolution.
作者 江波 张黎
出处 《计算机科学》 CSCD 北大核心 2008年第6期181-182,185,共3页 Computer Science
基金 重庆市科委自然科学基金计划资助项目(NoCSTC2007BB2451)
关键词 组织特征映射 聚类 数据挖掘 神经网络 Self-organizing feature mapping,Clustering,Data mining, Neural network
  • 相关文献

参考文献6

  • 1Ezequied L R, et al. Invariant pattern identification by self-organising networks. Pattern Recognition Letters, 2001,22: 983-990
  • 2Dunkel B, Soparkar N. Data Organization and Access for Efficient Data Mining. ICDE, 1999
  • 3Han J, Fu Yongiian. Mining Multiple-Level Association Rules in Large Database. IEEE Trans. on Knowledge and Data Engineering, 1999,11(5) : 798-805
  • 4王小玉,王亚东,冯丽.关联规则的挖掘[J].信息技术,2003,27(1):55-57. 被引量:20
  • 5Bloch, Isabelle. Fuzzy relative position between objects in image processing: A morphological approach. IEEE Transactions on Patten Analysis and Machine Intelligence, 1999,21 (7): 657- 664
  • 6Brin S,Motwai R J D, Ullman,et al. Dynamic Itemset Counting and Implication Rules for Market Basket Data//ACM SIGMOD Conference on Management of Data. 1997:265-276

二级参考文献2

  • 1[1]R.Agrawal,T.Imielinski,and A.Swami.Mining association rules between sets of items in large databases.Proceedings Of ACM SIGMOD ,May.1993, PP.207-216.
  • 2[3]Fan Jiannua and Li Deyi. An Overview of Data Mining and Knowledge Discovery, J.of Comput. Sci.&Technol, Vol.13,No.4,Jul.1998,PP.348-368.

共引文献19

同被引文献92

引证文献8

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部