摘要
设G是一个图,而M_1,M_2,…,M_k是G的k个导出匹配.称{M_1,M_2,…,M_k)是图G的一个k-导出匹配覆盖,若V(M_1)∪V(M_2)∪…∪V(M_k)=V(G).k-导出匹配覆盖问题是指对任一个给定的图G是否存在一个k-导出匹配覆盖.这篇文章证明了:直径为6的图的2-导出匹配覆盖问题和直径为2的图的3-导出匹配覆盖问题是NP-完备的,直径为2的图的2-导出匹配覆盖问题多项式可解.
Let G be a graph and M1,M2,…,Mk are k induced matchings of G. We say {M1,M2,…,Mk) is a k-induced-matching cover of G if V(M1)∪V(M2)∪…∪V(Mk)=V(G). The k-induced-matching cover problem asks whether a given graph G has a k-induced-matching cover or not. This paper shows that 2-induced-matching cover problem of graphs with diameter 6 and 3-induced-matching cover problem of graphs with diameter 2 are NP-complete, and 2-induced-matching cover problem of graphs with diameter 2 is polynomially solvable.
出处
《运筹学学报》
CSCD
北大核心
2008年第2期17-24,共8页
Operations Research Transactions
基金
the National Natural Science Foundation of China(10671183).
关键词
运筹学
导出匹配
导出匹配覆盖
NP-完备
多项式可解
Operations research, induced matching, induced matching cover, NP- complete, polynomially solvable