期刊文献+

小直径图的导出匹配覆盖(英文) 被引量:2

Cover a Graph with Small Diameter by Induced Matchings
下载PDF
导出
摘要 设G是一个图,而M_1,M_2,…,M_k是G的k个导出匹配.称{M_1,M_2,…,M_k)是图G的一个k-导出匹配覆盖,若V(M_1)∪V(M_2)∪…∪V(M_k)=V(G).k-导出匹配覆盖问题是指对任一个给定的图G是否存在一个k-导出匹配覆盖.这篇文章证明了:直径为6的图的2-导出匹配覆盖问题和直径为2的图的3-导出匹配覆盖问题是NP-完备的,直径为2的图的2-导出匹配覆盖问题多项式可解. Let G be a graph and M1,M2,…,Mk are k induced matchings of G. We say {M1,M2,…,Mk) is a k-induced-matching cover of G if V(M1)∪V(M2)∪…∪V(Mk)=V(G). The k-induced-matching cover problem asks whether a given graph G has a k-induced-matching cover or not. This paper shows that 2-induced-matching cover problem of graphs with diameter 6 and 3-induced-matching cover problem of graphs with diameter 2 are NP-complete, and 2-induced-matching cover problem of graphs with diameter 2 is polynomially solvable.
作者 董丽 原晋江
出处 《运筹学学报》 CSCD 北大核心 2008年第2期17-24,共8页 Operations Research Transactions
基金 the National Natural Science Foundation of China(10671183).
关键词 运筹学 导出匹配 导出匹配覆盖 NP-完备 多项式可解 Operations research, induced matching, induced matching cover, NP- complete, polynomially solvable
  • 相关文献

参考文献1

二级参考文献5

  • 1Cameron,K.,Induced matchings,Discrete Applied Mathematics,1989,24:97-102.
  • 2Bondy,J.A.,Murty,U.S.R.,Graph Theory with Applications,London:Macmillan Press Ltd,1976.
  • 3Garey,M.R.,Johnson,D.S.,Computers and Intractability:A Guide to the Theory of NP-Completeness,San Francisco:Freeman,1979.
  • 4Schaefer,T.J.,The complexity of satisfiability problems,Proc.10th Ann.ACM Symp. on Theory of Computing,Asssociation for Computing Machinery,New York,1978,216-226.
  • 5Yuan Jinjiang,Wang Qin,Partition a graph into induced matching,Discrete Mathematics,2003,263:323-329.

共引文献5

同被引文献7

  • 1杨爱峰 ,原晋江 .PARTITION A GRAPH WITH SMALL DIAMETER INTO TWO INDUCED MATCHINGS[J].Applied Mathematics(A Journal of Chinese Universities),2004,19(3):245-251. 被引量:6
  • 2CAMERON K. Induced matchings [J]. Discrete Appl. Math., 1989, 24(1-3): 97-102.
  • 3FAUDREE R J, GYARFAS A, SCHELP R H. et al. Induced matchings in bipartite graphs [J]. Discrete Math., 1989, 78(1-2): 83-87.
  • 4BONDY J A, MURTY U S R. Graph Theory with Applications [M]. American Elsevier Publishing Co., Inc., New York, 1976.
  • 5YUAN Jinjiang, WANG Qin. Partition the vertices of a graph into induced matchings [J]. Discrete Math., 2003, 263(1-3): 323-329.
  • 6YANG Aifeng, YUAN Jinjiang. Partition a graph with small diameter into two induced matchings [J]. Appl. Math. J. Chinese Univ. Set. B, 2004, 19(3): 245-251.
  • 7GODSIL C, R.OYLE G. Algebraic Graph Theory [M]. Springer-Verlag, New York, 2001.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部