期刊文献+

含孔橡胶矩形板的单向压缩 被引量:1

Uniaxial compression of a rectangular rubber plate with a single void
下载PDF
导出
摘要 在船舶和海洋工程领域,以橡胶材料为代表的超弹性材料应用越来越广泛,故研究橡胶材料的损伤和破坏的力学机理是一个非常现实的重大课题.该文力求通过研究橡胶材料的空穴萌生和增长来了解超弹性材料的损伤和破坏的力学机理.利用高玉臣给出的一类应变能函数分析了含单个微孔橡胶矩形板在受单向压缩作用下生长的有限变形问题.利用不可压缩条件确定了矩形板的变形模式,此变形模式含有2个物理意义完全不一样的参数,其中一个参数可由远场的变形状态确定,另一个参数可用最小势能原理导出变分近似解.进而给出了反映微孔变形的参数与外载间的关系,以及孔边应力分布的解析解.结果显示,高玉臣给出的应变能函数能较好地描述橡胶材料的有限变形特性,含有单个圆柱微孔的三维橡胶矩形板受压与受拉时的力学特性相差较大. The use of hyperelastic materials, of which rubber materials are representative, is widespread in the field of naval architecture and ocean engineering. This makes it important to study the mechanical process of damage and failure of rubber materials. We studied this issue by analyzing the advent and growth of voids in rubber materials. With the help of a class of strain energy functions proposed by Y. C. Gao, the finite deformation of a rectangular rubber plate with a single void subjected to uniaxial compression was examined. Using the assumption that it is incompressible, the deformation mode of the rubber rectangular plate was determined. There are two parameters with completely different physical meanings in this mode, one parameter can be determined by the state of deformation in the remote field, and the other can obtain an approximate solution using the minimum potential energy principle. Furthermore, the relationship between the parameters related to the deformation of the void and the exterior load was analyzed, and an analytic solution of the stress distribution around the edge of the void was also obtained. The resuits indicated that the strain energy function proposed by Y. C. Gao can appropriately describe the finite deformation behavior of rubber materials, and that a rectangular rubber plate displays distinct mechanical properties in uniaxial compression and in uniaxial extension.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2008年第5期460-464,共5页 Journal of Harbin Engineering University
基金 黑龙江省自然科学基金资助项目(A2004-08) 哈尔滨工程大学基础研究基金资助项目(HEUF04005)
关键词 橡胶矩形板 有限变形 超弹性 应变能函数 微孔变形 rubber rectangular finite deformation hyperelasticity strain energy function microvoid de formation
  • 相关文献

参考文献9

二级参考文献11

  • 1Horgan C O,Polignone D A. Cavitation in nonlinear elastic solids:A review[J]. Applied Mechanics Review, 1995,48(8) :471--485.
  • 2Chou-Wang M-S,Horgan C O. Void nuclearation and growth for a class of incompressible nonlinearly elastic materials[J].Int J Solids Structures, 1989,25(11) : 1239--- 1254.
  • 3REN Jiu-sheng, CHENG Chang-jun. Bifurcation of cavitation solutions for incompressible transversely isotropic hyper-elastic materials[J]. Journal of Engineering Mathematics ,2002,44(3) :245--257.
  • 4Horgan C O, Abeyaratne R.A bifurcation problem for a compressible nonlinearly elastic medium:growth of a micro-void[J] .J Elasticity,1986,16(1):189---200.
  • 5Horgan C O. Void nucleation and growth for compressible nonlinearly elastic materials: an example[J]. Int J Solids Structures, 1992,29(2) :279---291.
  • 6Polignone D A,Horgan C O. Cavitation for incompressible anisotropic nonlinearly elastic spheres[J].J Elasticity, 1993,33(1):27--65.
  • 7Hou Hangsheng,J Appl Mech,1993年,60卷,1页
  • 8程昌钧,尚新春.超弹性矩形板单向拉伸时微孔的增长[J].应用数学和力学,1997,18(7):573-578. 被引量:6
  • 9任九生,程昌钧.不可压超弹性材料中的空穴分叉[J].应用数学和力学,2002,23(8):783-789. 被引量:16
  • 10任九生,程昌钧.多孔Mooney-Rivlin材料矩形板的单向拉伸[J].力学季刊,2002,23(3):347-353. 被引量:2

共引文献6

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部