期刊文献+

分形不变分布及其在山东地区金矿床中的应用 被引量:15

Fractal invariable distribution and its application in gold mineral deposits in Shandong Province,China
下载PDF
导出
摘要 自相似性(标度不变性)是地学中的一个普遍现象。研究表明,地球化学元素含量、矿床储量规模及其空间分布具有分形结构。分形不变分布的特点要求大于某一尺度物体的数目与物体大小之间存在幂指数关系。论证了幂函数分布、帕累托分布、对数正态分布和齐波夫定律在一定条件下具有分形不变性质,它们是分形模型的数学基础。基于分形模型,用求和方法确定中国山东省金地球化学元素异常值范围。等值线大于或等于金地球化学元素临界值(200×10-9)围成的异常面积包含了已知的大型、超大型金矿床。 The self-similarity is a common phenomenon in geology. It has been shown that geochemical element data, mineral deposit and its space distribution have fractal structures. A fractal distribution requires that the number of objects larger than a specified size has a power-law dependence on the size. This paper shows that a number of distributions, including power-function, Pareto, log-normal and Zipf, display fractal properties under certain conditions and that this may be used as the mathematical basis for developing fractal models for data exhibiting such distributions. The summation method is developed on the basis of fractal models to determine thresholds for Au data in Shandong Province, China. The anomalous area enclosed by contours which have contour values greater than or equal to threshold(200×10^-9) contain the known large-sized and super largesized gold mineral deposits.
作者 申维
出处 《地学前缘》 EI CAS CSCD 北大核心 2008年第4期65-70,共6页 Earth Science Frontiers
基金 国家重点基础研究发展计划“973”项目(2006CB701400) 国家自然科学基金资助项目(40672196,40638041)
关键词 分形模型 分维数 地质异常值 fractal modeling fractal dimension geological anomaly
  • 相关文献

参考文献15

  • 1Gillepsie P A, Howard C B, Walsh J J, et al. Measurement and characterization of spatial distribution of fractures [J]. Technophysics, 1993, 226(1-4): 113-141.
  • 2Logdson S D. Analysis of aggregate fractal dimensions and aggregate densities back-calculated from hydraulic conductivity [J]. Soil Science Society of America Journal, 1995, 59(5):1216-1221.
  • 3Christopher C B, Paul R L Fractals in petroleum geology and Earth process[M]. New York:Plenum Press, 1995:1-317.
  • 4Turcotte D L. Fractals and chaos in geology and geophysics [M]. 2nd ed. cambridge: Cambridge University Press, 1997:1-398.
  • 5Johnson N L, Kotz S. Continuous univariate distributions-I [M]. New York:John Wiley & Sons Inc, 1970:1-300.
  • 6Shen W, Zhao P D. Multidimensional self-affine distribution with application in geochemistry[J]. Mathematical Geology, 2002, 34(2):109-128.
  • 7Mandelbrot B B. Forecasts of future prices, unbiased markets, and "martingale" models[J]. Journal of Business, University of Chicago, 1966, 39:242-255.
  • 8Ooldberg G. The Pareto law and the pyramid distribution [J]. Publication 505, Shell Development, Houston, Tezas, 1967: 10-20.
  • 9Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: W. H. Freeman and Company, 1982: 1-460.
  • 10Mandelbrot B B. The variation of some other speculative prices[J]. Journal of Business, University of Chicago, 1967, 40:393-413.

同被引文献189

引证文献15

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部