期刊文献+

基于机器可读词典的词汇知识抽取

LEXICAL KNOWLEDGE EXTRACTION BASED ON MACHINE READABLE DICTIONARY
下载PDF
导出
摘要 越来越多的实践证明,词汇知识将是未来自然语言处理系统中不可或缺的组成部分。利用机器可读词典作为资源,首先通过对释义项进行分类,然后基于释义分析自动生成用于抽取词汇知识的模板,然后采用模板匹配的方法,实现词汇知识的自动抽取。通过一种基于最大熵模型的有监督的机器学习方法,对结果进行过滤。在应用到《应用汉语词典》中后,取得了良好的抽取效果。 It has been proved by more and more practices that lexical information will be an indispensable part for natural language processing system in the future. This article introduces a method to realize the automatic extraction for lexical knowledge with the machine readable dictionary as the resource. Firstly to divide the words into groups according to their definition, then to set automatically the patterns of extraction for lexical knowledge based on the definition analysis, at last to realize the extraction by matching the patterns. The result was filtered by a supervised machine learning method based on the maximum entropy model, The method was tested on "Applied Chinese Dictionary" and turned out good extraction outcomes.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第6期8-10,共3页 Computer Applications and Software
基金 国家自然科学基金重大项目"非规范知识的基本理论和核心技术"(60496326)的支持
关键词 词汇知识 机器可读词典 模板抽取 最大熵 Lexical knowledge Machine readable dictionary Pattern extraction Maximum Entropy
  • 相关文献

参考文献9

二级参考文献42

  • 1鲁川,缑瑞隆,刘钦荣.交易类四价动词及汉语谓词配价的分类系统[J].汉语学习,2000(6):7-17. 被引量:24
  • 2周强.规则和统计相结合的汉语词类标注方法[J].中文信息学报,1995,9(3):1-10. 被引量:43
  • 3周强.一个汉语短语自动界定模型[J].软件学报,1996,7(A00):315-322. 被引量:9
  • 4[16]Hobbs J,Appelt D,Bear J et al.FASTUS:A Cascaded Finite-State Transducer for Extracting Information from Natural-Language Text[C].In:Roche,Schabes eds. Finite State Devices for Natural Language Processing, MIT Press,Cambridge MA, 1996
  • 5[17]Appelt D E.Introduction to Information Extraction[J].AI COMMUNICATIONS, 1999; 12(3)
  • 6[18]Yangarber R.Scenario Customization for Information Extraction[D].Ph D Thesis.New York University,2001-01
  • 7[19]Cowie J, Lehnert W.Information Extraction[J].Communications of the ACM, 1996;39(1)
  • 8[20]Grishman R Adaptive information extraction and sublangu age analysis[C].In:Proceedings of IJCAI-2001 Workshop on Adaptive Text Extraction and Mining,2001
  • 9[1]Applet D E,Israel D J.Introduction to Information Extraction Technology. A Tutorial for IJCAI-99,1999
  • 10[2]Gaizauskas R,Wilks Y.Information Extraction:Beyond Document Retrieval[J].Journal of Documentation, 1997

共引文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部