期刊文献+

基于AOI的客户行为分析方法 被引量:2

CUSTOMER BEHAVIOR ANALYSIS ALGORITHM BASED ON ATTRIBUTE-ORIENTED INDUCTION
下载PDF
导出
摘要 结合数据立方体技术以及概念分层的分析方法,将面向属性的归纳方法(AOI)与K-means聚类算法相结合,应用于客户时序数据聚类分析中,使每一类客户都具有相似的时序特征。实验表明该方法(AOIGen)能够满足大数据量的客户行为分析要求,比其它方法具有直观、高效等特点。 The data cube technique is associated with concept hierarchy analysis to integrate attribute-oriented induction (AOI) algorithm and K-means clustering algorithm to form an efficient customer clustering algorithm AOIGen. It is applied to clustering analysis of customer time sequence data to make every sort of customers possesses the similar time sequence character. Experimental results indicated that such integration satisfies the demand of customer behaviour analysis with large amount of data, and has the characters of direct perception and high efficiency compared to other algorithms.
作者 薛军 陈英
出处 《计算机应用与软件》 CSCD 北大核心 2008年第6期126-127,152,共3页 Computer Applications and Software
关键词 客户行为分析 聚类分析 K-MEANS算法 数据立方体 面向属性的归纳(AOI) Customer behavior analysis Clustering analysis K-means Data cube Attribute-oriented induction
  • 相关文献

参考文献6

  • 1Ng R, Han J. Efficient and effective cluster method for spatial data mining. In :Becc J, Jarke M,Zaniolo C eds. Proceedings of the 20th International Conference of Very Large Data Bases. San Francisco,CA: Morgan Kaufmann Publisher, 1994 : 144 - 155.
  • 2Han J, Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers ,2001.
  • 3Zakrzewska D, Murlewski J. Clustering algorithms for bank customer segmentation. Proceedings of 2005 5th International Conference on intelligent Systems Design and Applications,2005.
  • 4Han J, Fu Y. Exploration of the power of attribute-oriented induction in data mining. In Fayyad U, G Piatetsky Shapiro, Smyth P, Uthurusamy R. Advances in Knowledge Discovery and Data Mining, AAAI./MIT Press, 1996 : 599 - 421.
  • 5Wedel M, Kamakura W. Market segmentation : conceptual and method- ological foundations [ M ]. Norwell, MA : Kluwer Academic Publishing, 2000:10-15.
  • 6吴斌,郑毅,傅伟鹏,史忠植.一种基于群体智能的客户行为分析算法[J].计算机学报,2003,26(8):913-918. 被引量:46

二级参考文献14

  • 1Bonabeau, Dorigo M,Theraulaz G. Inspiration for optimization from social insect behaviour. Nature,2000,406(6) :39-42.
  • 2Dorigo M, Bonabeau E, Theralulaz G. Ant algorithms and stigmergy. Future Generation Computer Systems, 2000, 16(8) : 851-871.
  • 3Stutzle T, Hoos H. MAX-MIN Ant systems. Future Generation Computer Systems, 2000, 16(8) :889-914.
  • 4Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence:From Natural to Artificial Systems. New York: Oxford University Press, 1999.
  • 5Gianni Di Caro, Marco Dorigo. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research, 1998, 9 : 317 -355.
  • 6Deneubourg J L, Goss S, Frank N, Sendova-hanks A,Detrain C,Chrerien L. The dynamics of collective sorting: robot-like ants and ant-like robots. In: Proceedings of the 1st International Conference on Simulation of Adaptive Behavior: From Animals to Animats, MIT Press/Bradford Books, Cambridge,MA, 1991. 356-363.
  • 7Holland O E, Melhuish C. Stigmergy, self-organisation, and sorting in collective robotics. Artificial Life 1999, 5 (2) : 173-202.
  • 8Lumer E, Faieta B. Diversity and adaptation in populations of clustering ants. In:Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior: From Animals to Animats, 3, MIT Press/Bradford Books, Cambridge, MA, 1994.501-508.
  • 9Kuntz P,Snyers D, Layzell P. A stochastic heuristic for visualizing graph clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics, 1999, 5(3) :327-351.
  • 10Kuntz P,Layzell P, Snyers D. A colony of ant-like agents for partitioning in VLSI technology. In: Proceeding of the 4th European Conference on Artificial Life, 1997. 417-424.

共引文献45

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部