摘要
从结构的总势能泰勒级数展开式出发,推导了结构的切线刚度矩阵和割线刚度矩阵之间的数量关系。其结果可用于结构非线性稳定性分析,并且不仅可用于有限元法,还可用于瑞利-李兹法(Rayleigh-Ritz method)、伽辽金法(Galerkin method)等。
In this paper, the general mathematic relationship between structural secant and tangent stiffness matrices is developed in detail based on Taylor series expression of the total potential energy. The result is important to the analysis of structural nonlinear stability. Moreover, it can be used in Rayleigh-Ritz method, Galerkin method, etc., as well as finite element method.
出处
《强度与环境》
2008年第2期31-35,共5页
Structure & Environment Engineering
基金
国家自然科学基金资助项目(50478107)
关键词
几何非线性
切线刚度矩阵
割线刚度矩阵
势能
geometric nonlinearity
tangent stiffness matrix
secant stiffness matrix
potential energy