摘要
设R是含幺结合环,n≥2为自然数,Mk(R)为R上的k阶矩阵环,Pnk(R)表示Mk(R)中的n次幂等矩阵集.由n次幂等矩阵正交与代数等价的定义,得到了n次幂等正交矩阵集中2种不同形式的等价关系.
Let R be an associative ring, n≥2 be a natural number, Mk (R) be k th-order matrix ring over R and Pk^n (R) denote the set of n-potents in Mk (R). Two different equivalence relations on the set of npotent orthogonal matrices are obtained by the definitions of orthogonality and algebraic equivalence about n-potent matrices.
出处
《纺织高校基础科学学报》
CAS
2008年第2期255-256,共2页
Basic Sciences Journal of Textile Universities
关键词
n次幂等矩阵
正交
代数等价
n-potent matrices
orthogonal
algebraic equivalence