期刊文献+

一种用于纤维增强复合材料微观结构图像目标识别的改进模糊分类系统建模方法 被引量:1

An Improved Modeling Method of Fuzzy Classification System with Application in Object Recognition of Fiber Reinforced Composite Microstructure Image
下载PDF
导出
摘要 提出了一种改进的模糊分类系统的建模方法,采用模糊C均值聚类完成初始模糊分类系统的设计。提出改进的模糊规则置信度计算方法,对隶属函数和模糊规则相似度进行检测,剔除模糊规则中的冗余信息,利用遗传算法进行模糊分类系统的优化,提高系统的精确性和解释性。仿真结果证明了方法的有效性,对纤维图像的分类结果显示,该方法能获得与手工分类基本一致的分类结果。 An improved modeling method of fuzzy classifing system is proposed in the paper. The fuzzy C means clustering approach is adopted to design the initial fuzzy classifing system and the improved calculating approach of certainty degree is proposed. In order to remove the redundant information in the fuzzy rules, the similarities of the membership functions and the fuzzy rules are tested, and the fuzzy classifing system is optimized by using genetic algorithm to improve the accuracy and the interpretability of the system. The simulation result shows the validity of the proposed method, and the classifing results of fiber image show that the results obtained are similar to the manual classifiing results.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第3期417-421,共5页 Journal of East China University of Science and Technology
基金 华东理工大学青年骨干教师基金项目(2007-03)
关键词 模糊分类系统 隶属函数 模糊规则 遗传算法 纤维图像 fuzzy classification system membership function fuzzy rules genetic algorithm fiber image
  • 相关文献

参考文献15

  • 1Valente de Oliveira J. Semantic constraints for membership function optimization[J]. IEEE Trans Fuzzy Systems, 1999, 19(1) : 128-138.
  • 2Setnes M, Babusk R, Kaymaku, et al. Similarity measures in fuzzy rule base simplification[J]. IEEE Trans on Systems,Man and Cybernetics, 1998, 28(3): 376-386.
  • 3Setnes M, Roubos H. GA fuzzy modeling and classification: Complexity and performance[J]. IEEE Trans on Fuzzy Systems, 2000,8(5): 509-522.
  • 4Wang Han Li, Sam Kwong. Multi objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction[J].Fuzzy Sets and Systems, 2005, 149 (1): 149-186.
  • 5Ho S Y, Chen H M. Design of accurate classifiers with a compact fuzzy rule base using an evolutionary scatter partition of feature space[J]. IEEE Trans on Systems, Man and Cybernetics-PartB, 2004, 34(21) : 1031-1044.
  • 6Paiva R P, Dourado A. Interpretability and learning in neurofuzzy system[J]. Fuzzy Sets and Systems, 2004, 147 ( 1 ) : 17-38.
  • 7Eghbal G Mansoori, Mansoor J Zolghadri, Seraj D Katebi. A weighting function for improving fuzzy classification systems performance[J]. Fuzzy Sets and Systems, 2007, 158: 583- 591.
  • 8Jin Y. Advanced Fuzzy Systems Design and Applications [M].New York: Physical-Verl, 2003.
  • 9Nauek D D. Fuzzy data analysis with NEFCLASS[J]. Inter national Journal of Approximate Reasoning, 2003,32(2-3): 103-130.
  • 10Cordon O, Del Jesus M J, Herrera F. A proposal on reason ing methods in fuzzy rule-based classification systems[J].International Journal of Approximate Reasoning, 1999,20: 21-45.

二级参考文献4

共引文献60

同被引文献10

  • 1Mokhtarian F, Mackworth. A Scale -Based description andrecognition of planar curves and two-dimensional shapes [J].IEEETrans on Pattern Analysis and Machine Intelligence, 1986, 8(1):34-44.
  • 2Belongie S, Malik J,Puzicha J. Shape matching and objectrecognition using shape contexts[J].IEEE Trans, on Pattern Analy-sis and Machine Intelligence, 2002, 24(4): 509-522.
  • 3Dai XL,Khorram S. A feature -based image registration algo-rithm using improved chain -code representation combined withinvariant moments [J].IEEE Trans, on Geo-science and RemoteSensing, 1999, 37(5): 2351-2362.
  • 4Li H,Mitra SK. A contour-based approach to multi-sensor im-age registration [J].IEEE Trans, on Image Processing, 1995, 4(3):320-334.
  • 5章毓晋.图像工程(上册):图像处理和分析[M].清华大学出版社.1999年.
  • 6Hough P V C. Methods and means for recognizing complex pat-tems[P].USA, United States Patent, 3069654, 1962.
  • 7Kasaim A A, Tan T, Tan K H. A comparative study of effi-cient generalized Hough transform techniques[J].Image and VisionComputing, 1999, 17(10): 737-748.
  • 8万永菁,林家骏.一种用于纤维增强复合材料微观结构图像的阈值分割算法[J].华东理工大学学报(自然科学版),2008,34(2):283-289. 被引量:1
  • 9商锋,王保平,冯晓毅.一种新的图像边缘检测方法[J].微计算机信息,2009,25(24):248-250. 被引量:5
  • 10陆宗骐,童韬.链码和在边界形状分析中的应用[J].中国图象图形学报(A辑),2002,7(12):1323-1328. 被引量:47

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部