期刊文献+

基于实现极差和实现波动率的中国金融市场风险测度研究 被引量:27

The Study on Financial Market Risk Measures in China Based on Realized Range and Realized Volatility
原文传递
导出
摘要 目前比较流行的金融市场风险价值研究一般采用日收益数据,并基于GARCH类模型进行估计和预测。本文利用沪深股指日内高频数据,分别通过ARFIMA模型和CARR模型对实现波动率和较新的实现极差建模,计算风险价值。通过对VaR的似然比和动态分位数等回测检验,实证分析了各种模型的VaR预测能力。结果显示,使用日内高频数据的实现波动率和实现极差模型的预测能力强于采用日数据的各种GARCH类模型。 Current studies on financial market risk measures usually use daily returns based on GARCH type models. By using intraday high frequency data of Shanghai and Shenzhen stock indices, the paper builds up a realized volatility model and a realized range model based on ARFIMA model and CARR model respectively, which are applied to calculate VaR. The authors also employ the Kupiec LR test and dynamical quantile test to compare the performance of VaR forecasting of all models. Empirical results show that realized volatility and realized range models based on intraday data are better than GARCH type models based on daily returns.
出处 《金融研究》 CSSCI 北大核心 2008年第6期109-121,共13页 Journal of Financial Research
基金 国家985工程二期重点项目(07200701)资助
关键词 VAR 实现极差 实现波动率 VaR, realized range, realized volatility
  • 相关文献

参考文献16

二级参考文献64

  • 1刘凤芹,吴喜之.基于SV模型的深圳股市波动的预测[J].山西财经大学学报,2004,26(4):96-99. 被引量:10
  • 2徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:52
  • 3丁忠明,夏万军.中国股市波动的CARR模型分析[J].商业经济与管理,2005(12):41-45. 被引量:8
  • 4于亦文.实际波动率与GARCH模型的特征比较分析[J].管理工程学报,2006,20(2):65-69. 被引量:17
  • 5Andersen T G,Bollerslev T,Diebold F,Labys P. Exchange rate returns standardized by realized volatility are (nearly) Gaussian[J]. Multinational Finance Journal,2000,4:159~179.
  • 6Andersen T G,Bollerslev T,Diebold F,Labys P. The distribution of exchange rate volatility[J]. Journal of American Statistical Association,2001,96:42~55.
  • 7Andersen T G,Bollerslev T,Diebold F,Ebens H. The distribution of stock return volatility[J]. Journal of Financial Economics,2001,61:43~76.
  • 8Andersen T G,Bollerslev T,Diebold F,Labys P. Modelling and forecasting realized volatility[J]. Econometrica,2003, 71(2):579~625.
  • 9Blair B J,Poon S H,Tarlor S J. Forecasting S&P 100 volatility:the incremental information content of implied volatilities and high frequency index returns[J]. Journal of Econometrics,2001,105:5~26.
  • 10Andersen T G,Bollerslev T. Answering the critics:yes, ARCH models do provide good volatility forecasts[J]. International Economic Review,1998,39(4):885~905.

共引文献120

同被引文献378

引证文献27

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部