期刊文献+

具有脉冲的Schoner竞争模型的周期解的存在性

Existence of Periodic Solution of Schoner Competitive Model with Impulsive Effects
下载PDF
导出
摘要 研究具有脉冲的Schoner竞争模型,运用重合度理论研究其周期解的存在性,得到周期解存在的充分条件. In this paper, Schoner competitive model with impulsive effects is studied. We investigate the existence of periodic solution by using coincidence degree theory. Sufficient conditions for the existence of the periodic solution are obtained.
作者 姚志健
出处 《数学研究》 CSCD 2008年第2期181-191,共11页 Journal of Mathematical Study
基金 安徽省教育厅自然科学项目(KJ2008B236)
关键词 Schoner竞争模型 脉冲 周期解 重合度 Schoner competitive model impulsive periodic solution coincidence degree
  • 相关文献

参考文献17

  • 1Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations. World Scientific Press, Singapore,1989.
  • 2Drumi Bainov, Pavel Simeonov. Impulsive differential equation:Periodic solutions and applications. Longman Scientific and Technical, 1993.
  • 3陆忠华,陈兰荪.周期系数的Schoner模型分析[J].数学物理学报(A辑),1992,12(S1):127-129. 被引量:5
  • 4Bainov D D' Simeonov P S. System with impulsive effect: StaBility, theory and applications. John Wiley and Sons, New York,986.
  • 5Bainov D D. Impulsive differential equations. Longman, 1993.
  • 6Ballinger G, Liu X Permanence of population growth models with impulsive effects. Math.Comput.Modellin: 1997, 26(12): 59-72.
  • 7Gaines R E. Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Springer-Verlag. Berlin, 1977.
  • 8蒋达清,魏俊杰.非自治时滞微分方程周期正解的存在性[J].数学年刊(A辑),1999,20A(6):715-720. 被引量:47
  • 9李永昆.一类时滞微分方程周期正解的存在性和全局吸引性[J].中国科学(A辑),1998,28(2):108-118. 被引量:35
  • 10Fan Meng, Wang Ke, Jiang Daqing. Existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Voherra competition systems with several deviating arguments. Mathematical Biosciences, 1999: 160: 47-61.

二级参考文献13

  • 1李永昆.中立型时滞模型的周期正解[J].数学学报(中文版),1996,39(6):789-795. 被引量:16
  • 2Iannacci R, Nkashama M N. On Periodic Solutions of Forced Second Order Differential Equations with a Deviating Argment. Lecture Notes in Math., Vol.1151, SpringerVerlag, 1984, 224-232.
  • 3Mawhin J L. Periodic Solutions of Some Vector Retared Functional Differential Equations. J. Math. Anal. Appl., 1974, 45:588-603.
  • 4Huang Xiankai, Xiang Zigui. 2π-priodic Solutions for Duffing x″ + g(x(t - τ)) = p(t)with Delay. Chinese Science Bulletin, 1994, 3:201-203 (in Chinese).
  • 5Gaines R E, Mawhin J L. Coincidence Degree and Non-linear differential Equations.Lecture Notes in Math., Vol. 568, Springer-Verlag, 1977.
  • 6Li Yongkun. Periodic Solutions of the Liénard Equation with Deviating Arguments.J. Math. Research and exposition, 1998, 4:565-570 (in Chinese).
  • 7李永昆,中国科学.A,1998年,28卷,2期,108页
  • 8Wang J,Proc Amer Math Soc,1997年,125卷,2275页
  • 9郭大钧,非线性常微分方程泛函方法,1995年
  • 10Wang H,J Diff Eqs,1994年,109卷,1页

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部