期刊文献+

不动点与随机时滞微分方程的稳定性

Fixed points and stability of stochastic delay differential equations
下载PDF
导出
摘要 考虑一类线性变时滞随机微分方程,利用不动点理论,给出了零解均方渐近稳定的条件.这些条件不要求时滞有界,也不要求方程的系数函数不变号.证明了一个带有充分必要条件的均方渐近稳定性定理,改进和推广了一些相关文献的结果. In this paper we consider a linear scalar stochastic differential equation with variable delays and give conditions to ensure that the zero solution is asymptotically mean square stable by means of fixed point theory. These conditions do not require the boundedness of delays, nor do they ask for a fixed sign on the coefficient functions. An asymptotic mean square stability theorem with a necessary and sufficient condition is proved. Some well-known results are improved and generalized.
出处 《广州大学学报(自然科学版)》 CAS 2008年第3期6-9,共4页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10671043)
关键词 不动点 稳定性 随机微分方程 变时滞 fixed points stability stochastic differential equations variable delays
  • 相关文献

参考文献11

  • 1Burton T A. Fixed points and stability of a nonconvolution equation [ J ]. Proc Amer Math Soc, 2004,132:3679-3687.
  • 2Burton T A. Fixed points, stability, and exact linearization[J]. Nonlinear Anal, 2005, 61 : 857-870.
  • 3Burton T A. Fixed points, Volterra equations, and Becker's resolvent[J]. Acta Math Hungar, 2005, 108:261-281.
  • 4Burton T A, Furumochi T. A note on stability by Schauder' s theorem[J]. Funkcialaj Ekvacioj, 2001, 44: 73-82.
  • 5Burton T A, Furumochi T. Krasnoselskii' s fixed point theorem and stability[J]. Nonlinear Anal,2002, 49: 445-454.
  • 6Burton T A, Zhang B. Fixed points and stability of an integral equation: nonunlqueness [J]. Appl Math Lett, 2004, 17: 839- 846.
  • 7Furumochi T. Stabilities in FDEs by Schauder' s theorem[J]. Nonlinear Anal, 2005, 63: 217-224.
  • 8Raffoul Y N. Stability in neutral nonlinear differential equations with functional delays using fixed-point theory[ J ]. Math Comp Model, 2004, 40: 691-700.
  • 9Zhang B. Fixed points and stability in differential equations with variable delays[ J]. Nonlinear Anal, 2005, 63: 233-242.
  • 10Kolmanovskii V B, Nosov V R. Stability of functional differential equations [ M]. London:Academic Press, 1986.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部