期刊文献+

智能交通黄网格违章车辆监测 被引量:1

Intelligent Detection of Peccancy Vehicles in the Yellow Grid Region
下载PDF
导出
摘要 针对智能交通的广泛应用与需求,提出了一种黄网格区域违章车辆智能监测算法.首先通过连续帧差法生成不含任何车辆信息的静态背景,然后结合差分图像分割算法和二值数学形态学算法来提取车辆目标,最后通过监测车辆并判断其在黄网格区域滞留时间来判断该车是否违章.监测系统采用多摄像头远近景协同拍摄的方法,保存车辆违章的视频片断并提取车牌信息,最终结果作为交警处罚违章车辆的依据.本文提出的黄网格区域违章监测算法具有一定的实际应用价值,在智能交通管理中得到一定的应用. For the wide application and demand of intelligent traflqc monitoring, this paper puts forward an algorithm to detect the peeeaney vehicle in the yellow grid region. First, this paper uses the difference among continuous frames to generate the static background without any information of vehicles. And then, by combining the difference image segmentation algorithm and the mathematical morphology algorithm to extract the vehicles are exacted. At last, through judging how long the vehicles stay in the yellow grid region the vehicles of peccancy are detected. The monitoring system uses three cameras to obtain the far and near scenes at the same time to record the video and license plate of the vehicle of peccancy for future punishment. This paper introduces the algorithm of peccancy vehicle detection in the yellow grid region with practical application value, and it can be widely applied in the traffic management with low cost.
出处 《交通运输系统工程与信息》 EI CSCD 2008年第3期34-39,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 天津市公安交通局科研基金(公科[2005]16号)
关键词 智能交通 违章监测 智能系统 黄网格 intelligent traffic peccancy detection intelligent systems yellow grid
  • 相关文献

参考文献4

二级参考文献15

共引文献20

同被引文献14

  • 1陈斌.基于多智能主体系统的车道变换模型[J].中国公路学报,2005,18(3):104-108. 被引量:19
  • 2卢卫娜,史忠科.基于单目视觉的车道线和道路边界同步检测[J].传感技术学报,2007,20(5):1171-1175. 被引量:12
  • 3Pomerleau D. Visibility estimation from a moving vehicle using the RALPH vision system [ C ]. IEEE Conference on Intelligent Transportation System, Boston, USA, 1997:906-911.
  • 4Crisman J, Chuck Thorpe. SCARF:a color vision system that tracks roads and intersections [ J ]. IEEE Transactions on Robotics and Automation, 1993,9 ( 1 ) :49-58.
  • 5Jochem Todd M, Pomerleau Dean A, Thorpe Charles E. Vision-based neural network road and intersection detection and traversal[ C ]. IEEE Conference on Intelligent Robots and Systems, Pittsburgh, USA, 1995,3:344-349.
  • 6McCall J C, Trivedi M M. Video-based lane estimation and tracking for driver assistance:survey, system and evaluation [ J]. IEEE Transactions on Intelligent Transportation Systems,2006,7( 1 ) :20-37.
  • 7Jung Y K, Ho Y S. Traffic parameter extraction using video-based vehicle tracking [ C ]. Proceedings of IEEE/IEEJ/ JSAI International Conference on Intelligent Transportation Systems, 1999:764-769.
  • 8Taj Jen-chao, Tseng Shung-tsang, Lin Ching-po, et al. Real-time image tracking for automatic traffic monitoring and enforcement applications [ J ]. Image and Visison Computing, 2004,22 ( 6 ) :485-501.
  • 9Yao F H,Sekmen A, Malkani M J. Multiple moving target detection, tracking, and recognition from a moving observer [ C ]. Proceedings of the IEEE International Conference on Information and Automation,2008:978-983.
  • 10Lei Bangjun, Xu LiQun. Real-time out-door video surveillance with robust foreground extraction and object tracking via multi-state transition management [ J ]. Pattern Recognition Letters, 2006,27 ( 15 ) : 1816- 1825.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部