期刊文献+

线性分组码网格图状态复杂度研究

Study of State-Complexty of Trellises for Linear Block Codes
下载PDF
导出
摘要 介绍线性分组码的传统网格和咬尾网格定义,给出一种新的构造咬尾网格方法--陪集归并法,该方法能一次减少几个连续时刻的状态数。举例说明如何用这种方法构造咬尾网格。讨论在网格中含有1个峰值情形下,采用陪集归并法如何将峰值减半,且具体给出网格中含有2到4个连续峰值时如何将峰值减半的方法。 The definitions of conventional BC3R trellis and tail-biting trellis are started with. Next, a new way, called coset merge, to construct tail-biting trellises is shown. By using this method, half of the number of several continuous vertex-states can be reduced. How to construct tail-biting trellises by examples is also shown. Finally, how to reduce half of the state-complexity of a trellis with one peak is considered and an approach for trellises with 2 to 4 continuous peaks is also given.
出处 《安徽工业大学学报(自然科学版)》 CAS 2008年第3期319-323,共5页 Journal of Anhui University of Technology(Natural Science)
关键词 传统网格 咬尾网格 陪集 连线关系 峰值 conventional trellis tail-biting trellis coset line- connection peak
  • 相关文献

参考文献11

  • 1Bahl L, Cooke J, Jelinek F, et al. Optimal decoding of linear codes for minimizing symbol error rate[J]. IEEE Trans. On Information Theory, 1974, 20(2): 284-287.
  • 2Wolf J. Efficient maximum-likelihood decoding of linear block codes using a trellis[J]. IEEE Trans. on Information Theory, 1978, 24 (1): 76-80.
  • 3McEliece R. On the BCJR trellis for linear block codes[J]. IEEE Trans. on Information Theory, 1996, 42(4): 1072-1092.
  • 4Vardy A, Kschischang F. Proof of a conjecture of McEliece regarding the expansion index of the minimal trellis[J]. IEEE Trans. on Information Theory, 1996, 42(6): 2027-2034.
  • 5Muder D J. Minimal trellises for block codes[J]. IEEE Trans. on Information Theory, 1988, 34(5): 1049-1053.
  • 6Kschischang F, Sorokine V. On the trellis structure of block codes[J]. IEEE Trans. on Information Theory, 1995, 41(6): 1924-1937.
  • 7Calderbank A, Forney Jr G D, Vardy A. Minimal tail-biting trellises: The Golay code and more[J]. IEEE Trans. On Information Theory, 1999, 45(5): 1435-1455.
  • 8Koetter R, Vardy A. On the Theory of Linear Trellises[M]//Blaum M. Information, Cading and Mathematics. Boston: Kluwer, 2002: 323-354.
  • 9Koetter R, Vardy A. The structure of tail-biting trellises: Minimality and basic principles[J]. IEEE Trans. on Information Theory, 2003, 49(9): 1877-1901.
  • 10Nori A V, Shankar P. Unifying views of tail-biting trellis constructions for linear block codes[J]. IEEE Trans. On Information.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部