期刊文献+

混合遗传算法和隐马尔可夫模型的Web信息抽取 被引量:4

Hybrid genetic algorithm and hidden Markov model for Web information extraction
下载PDF
导出
摘要 传统Web信息抽取的隐马尔可夫模型对初值十分敏感和在实际训练中极易得到局部最优模型参数。提出了一种使用遗传算法优化HMM模型参数的Web信息抽取混合算法。该算法使用实数矩阵编码表示染色体,似然概率值为适应度取值,将GA与Baum-Welch算法相结合对HMM模型参数进行全局优化,并且调整GA-HMM的Baum-Welch算法参数实现Web信息抽取。实验结果表明,新的算法在精确度和召回率指标上比传统HMM具有更好的性能。 The traditional training method of HMM for Web information extraction is sensitive to the initial model parameters and easy to lead to a sub-optimal model in practice.A hybrid algorithm is proposed to optimize HMM parameters by using genetic algorithm for Web information extraction,The algorithm makes use real number matrix encoding as the representation of the chromosomes,the fitness values are the results of the likelihood values,combines GA and Baum-Welch algorithm to optimize HMM parameters globally,and then to adjust the Baum-Welch algorithm parameters in GA-HMM for Web information extraction,Experimental results show that the new algorithm improves the performance in precision and recall.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第18期132-135,共4页 Computer Engineering and Applications
基金 湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.04JJ40051) 湖南省教育厅资助科研课题(the Research Project of Department of Education of Hunan Province China under Grant No.06c724)
关键词 遗传算法 隐马尔可夫模型 WEB信息抽取 Baum—Welch算法 最大似然算法 genetic algorithm hidden Markov model Web information extraction Baum-Welch algorithm maximum likelihood algorithm
  • 相关文献

参考文献13

  • 1Freitag D,McCallurn A.lnforrnation extraction with HMMs and shrinkage[C]//Proceedings of the AAAI'99 Workshop on Maehine Learning for Information Extraction.Orlando,Florida: AAAi Press/ MIT Press, 1999:31-36.
  • 2Freitag D,McCallum A.Information extraction with HMM structures learned by stochastic optimization[C]//Proceedings of the Eighteenth Conference on Artificial Intelligence.Austin,Texas: AAAI Press, 2000 : 584-589.
  • 3Seymore K,McCallurn A,Rosenfeld R.Learning hidden Markov model structure for information extraction[C]//AAAI'99 Workshop on Machine Learning for Information Extraction.Orlando,Florida: AAAi Press/MIT Press, 1999:37-42.
  • 4Freitag D,McCallum A,Pereira F.Maximum entropy Markov models for information extraction and seqmentation[C]//Proceedings of ICML- 2000.CA, USA : Morgan Kanfmann, 2000 : 591-598.
  • 5刘云中,林亚平,陈治平.基于隐马尔可夫模型的文本信息抽取[J].系统仿真学报,2004,16(3):507-510. 被引量:51
  • 6Bouchaffra D,Tan J.Structural hidden Markov models using a relation of equivalence: application to automotive designs[J].Data Mining and Knowledge Discovery,2006, 12:79-96.
  • 7Mooney R J,Nahrn U Y.Text mining with information extraction[C]// Daelernans W,du Plessis T,Suyrnan C,et al.Proceedings of the 4th International MIDP Colloquium Multilingualisrn and Electronic Language Managernent:Bloern-foutein,South Africa,September 2003. South Africa:Van Schaik Pub,2005: 141-160.
  • 8Phan X H,Horiguchi S,Ho T B.Autornated data extraction from the Web with conditional rnodels[J].Int J Business Intelligence and Data Mining,2005, 1(2) : 191-209.
  • 9Kwong S,Chan C W,Man K F,et al.Optirnization of HMM topology and its model parameters by genetic algorithms [J].Pattern Recognition, 2001,34: 509-522.
  • 10Hong Q Y,Kwong S.A genetic classification method for speaker reeognition[J].Engineering Applications of Artificial Intelligence, 2005,18: 13-19.

二级参考文献13

  • 1[1]A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A machine learning approach to building Domain-Specific Search Engines [A]. In Proceedings of IJCAI-99 [C]. 622-667.
  • 2[2]Ellien Riloff. Automatically Constructing a Dictionary for Information Extraction Task [A]. Proceeding for the Eleventh National Conference on Artificial Intelligence [C]. 1993. 811-816.
  • 3[3]E. Riloff , R. Jones. Learning Dictionaries for Information Extraction by Multi-Level Bootstrapping [A]. Proceedings of the Sixteenth National Conference on Artificial Intelligence [C]. 1999. 811-816.
  • 4[4]S. Soderland. Learning information extraction rules for semi-structured and free text [J]. Machine Learning, 1999, 1-44.
  • 5[5]Kushmerick, N. Wrapper induction: efficiency and Expressiveness [J]. Artificial Intelligence,2000, Vol. 118, pp. 15--68.
  • 6[6]Leek,T. R. Information Extraction Using Hidden Markov Models [D]. Master's thesis, UC san Diego,1997.
  • 7[7]Kristie Seymore, Andrew McCallum, Ronal Rosenfel. Learning Hidden Markov Model Structure for Information Extract [A]. AAAI' 99 Workshop on Machine Learning for Information Extraction [C]. 1999. 37-42.
  • 8[8]Dayne Frietag, Andrew McCallum. Information Extraction with HMMs and shrinkage [A]. In Proceedings of the AAAI'99 Workshop on Machine Learning for Information Extraction [C], 1999, pp. 31-36.
  • 9[9]Freitag, D., & McCallum, A. Information extraction with HMM structures learned by stochastic optimization [A]. Proceedings of the Eighteenth Conference on Artificial Intelligence [C]. 2000.584-589.
  • 10[10]Freitag, D., McCallum, A., and Pereira F. Maximum Entropy Markov Models for Information Extraction and Segmentation [A]. In proceedings of ICML-2000 [C]. 591-598.

共引文献50

同被引文献34

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部