期刊文献+

蚁群算法中参数设置的研究 被引量:27

The research on the parameters of the ant colony algorithm
下载PDF
导出
摘要 蚁群算法是一种新的随机优化算法,它利用人工蚂蚁在其途经路上释放信息素寻优,体现了正反馈、分布式、多anent协同性和并行性等特点,蚁群算法中的各参数对计算结果有很大影响.介绍了蚁群算法原理和模型(以TSP问题为例),对基本蚁群算法参数的合理选取进行了实验分析,给出了算法参数选取的基本原则,有利于蚁群算法在优化问题中的应用. Ant Colony Algorithm is a new stochastic optimization algorithm using artificial ants releasing pheromone on the path, characterized with a positive feedback, distributed computation, multi agent synergy and parallel algorithm. The parameters have an important role in the result of ant colony algorithm. The principle and model of Ant Colony Algorithm were introduced and reasonable experiments were carried out on the parameters of this algorithm, including basic principles for the parameter selection, which are beneficial to the application and development of the ant colony algorithm in optimization problems.
出处 《山东理工大学学报(自然科学版)》 CAS 2008年第1期7-11,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(50465001) 山东省中青年科学家奖励基金(2006BS05008)
关键词 蚁群算法 信息素 组合优化 旅行商问题 ant colony algorithm pheromone combinatorial optimization TSP(traveling salesman problem)
  • 相关文献

参考文献8

  • 1刘乃文,王奎峰.蚁群优化算法及其应用[J].山东师范大学学报(自然科学版),2006,21(2):30-32. 被引量:5
  • 2Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C]//Dorigo M.Proceedings of the 1st European Conference on Artificial Life.Paris:Elsevier Publishing,1991:134-42.
  • 3Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transaction on Systems,Man,and Cybernetics-Part B,1996,26 (1):29(1).
  • 4Dorigo M,Gambardella L M.Ant colonies for the traveling salesman problem[J].BioSystems.1997,43(2):73-81.
  • 5Chang H S.An ant system based exploration-exploitation for reinforcement learning[C]// Hyeong So0 Chang.Proceedings of the 2004 IEEE International Conference on Systems,Man and Cybernetics.Seoul,Korea,2004,4:3 805-3 810.
  • 6段海滨,王道波.一种快速全局优化的改进蚁群算法及仿真[J].信息与控制,2004,33(2):241-244. 被引量:57
  • 7王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 8覃刚力,杨家本.自适应调整信息素的蚁群算法[J].信息与控制,2002,31(3):198-201. 被引量:107

二级参考文献29

  • 1彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 2杨玉凤,刘弘.协同设计中的通信支持技术[J].山东师范大学学报(自然科学版),2005,20(1):18-20. 被引量:6
  • 3丁海军,陈佑健.蚁群算法的现状与研究进展[J].河海大学常州分校学报,2005,19(1):5-9. 被引量:12
  • 4Colorni A, Dorigo M, Maniezzo V, et al. Distributed optimization by ant colonies [ A]. Proceedings of ECAL91 ( European Conference on Artificial Life) [ C ]. Paris, France : 1991.134 - 142.
  • 5Dorigo M, Maniezzo V, Colomi A. The ant system:optimization by a colony of cooperating agents [ J]. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 1996, 26( 1 ) : 29-41.
  • 6Verbeeck K, Nowe A. Colonies of learning automata [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2002,32(6) : 772 -780.
  • 7Montgomery J, Randall M. Anti-pheromone as a tool for better exploration of search space [A]. Proceedings of Third International Workshop ANTS [C]. Brussels, Belgium:2002. 100 - 110.
  • 8Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour [J]. Nature, 2000, 406(6) :39-42.
  • 9Dorigo M, Gambardella L M. Solving symmetric and asym-metric TSPs by ant colonies [ A ]. Proceedings of the IEEE Conference on Evolutionary Computation [ C ]. Nagoya, Japan : 1996. 622-627.
  • 10Thomas S, Holger H H. MAX - MIN ant system [J]. Future Generation Computer Systems, 2000,16 ( 8 ) : 889 - 914.

共引文献360

同被引文献204

引证文献27

二级引证文献188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部