期刊文献+

基于g-期望的关于二元函数的Jensen不等式的充要条件

The sufficient and necessary conditions of Jensen's inequality of bivariate function for g-expectation
下载PDF
导出
摘要 证明了基于g-期望的关于二元函数的Jensen不等式成立当且仅当生成元g与y无关,g为正齐次的且为关于z的凸函数. It is proved that Jensen's inequality of bivariate function for g-expectation comes into existence if and only if g is positive-homogenous and convex about z and does not depend on y.
出处 《山东理工大学学报(自然科学版)》 CAS 2008年第2期72-75,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 倒向随机微分方程 G-期望 JENSEN不等式 正齐次性 凸函数 backward stochastic differential equation g-expectation Jensen inequality covex positive-homogenous
  • 相关文献

参考文献5

二级参考文献21

  • 1JIANG LONG,CHEN ZENGJING School of Mathematics and System Sciences, Shandong University, Jinan 250100, China. Department of Mathematics, China University of Mining and Technology, Xuzhou 221008, Jiangsu,China. E-mail: jianglong@math.sdu.edu.cn School of Mathematics and System Sciences, Shandong University, Jinan 250100, China..ON JENSEN'S INEQUALITY FOR g-EXPECTATION[J].Chinese Annals of Mathematics,Series B,2004,25(3):401-412. 被引量:26
  • 2白山,江龙,何娇.具有共单调可加性的g-期望的一些性质[J].山东大学学报(理学版),2005,40(2):42-47. 被引量:2
  • 3[1]Peng S. BSDE and related g-expectations[A]. El Karoui N, Mazliak L. Pitman Research Notes in Mathematics Series, No.364, Backward Stochastic Differential Equations [C]. Harlow: Addison Welsey Longman, 1997. 141~159.
  • 4[2]Briand P, Coquet F, Hu Y, Mémin J, Peng S. A converse comparison theorem for BSDEs and related properties of g-expectation[J]. Electon. Comm. Probab, 2000, 5: 101~117.
  • 5[3]Coquet F, Hu Y, Mémin J, Peng S. Filtration consistent nonlinear expectations and related g-expectation[J], Probab. Theory & Related Fields, 2002,123: 1~27.
  • 6[4]Chen Z, Epstein L. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002, 70:1403~1443.
  • 7[5]Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation[J]. Systems Control Letters, 1990,14: 55~61.
  • 8[6]Peng S. A General Dynamic Programing Principle and Hamilton-Jacobi-Bellman Equation[J]. Stochastics, 1992, 38(2):119~134.
  • 9[7]El Karoui N, Peng S, Quence M C. Backward Stochastic Differential Equation in Finance[J]. Math. Finance 1997,7(1):1~71.
  • 10[1]Peng, S., BSDE and related g-expectations, Pitman Research Notes in Mathematics Series, 364, 1997,141-159.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部