期刊文献+

面向社团结构划分的最短路径相异性指数算法 被引量:3

A Dissimilarity Index Algorithm of the Shortest Path for Communiuy Structure Partition
下载PDF
导出
摘要 用最短路径距离取代网络中用布朗微粒衡量的两节点之间的距离,在此基础上提出了基于最短路径的相异性指数算法。对算法实现过程进行描述,并将算法应用于存在的研究算法分析实例上,说明该算法可行性。把该算法应用于本文构造的虚拟企业网络的社团划分上,划分结果与预期相符。 Using the shortest path distance to replace the distance between two nodes measured by Brownian particles, we present a dissimilarity index algorithm based on the shortest path. The realization process of the algorithm is described. The algorithm is proved feasible by an example of community structure partition by a contrast analysis. The algorithm is applied to community structure partitions of a virtual enterprise network that is built in the paper, the partition result lives up to what is expected.
出处 《系统工程》 CSCD 北大核心 2008年第4期113-116,共4页 Systems Engineering
基金 国家自然科学基金资助项目(70501026) 高等学校博士学科点专项科研基金资助项目(20060335134) 国家高技术研究发展专项资助项目(2006AA04Z116)
关键词 社团结构 最短路径 相异性指数 相异性阈值 社团结构划分 Community Structure Shortest Path Dissimilarity Index Dissimilarity Threshold Community StructurePartition
  • 相关文献

参考文献10

  • 1Newman M E J. Detecting community structure in networks [J]. The European Physical Journal B, 2004,38 (2) : 321- 330.
  • 2Scott J. Social network analysis:a handbook (second edition) [M]. London : Sage Publications, 2002.
  • 3Watts D J, Strongatz S H. Collective dynamics of "small-world" networks[J]. Nature, 1998,393: 440-442.
  • 4Amaral L A N,et al. Classes of small-world networks [J]. National Acad Sciences, 2000, 97:11149-11152.
  • 5Machiori M, Latora V. Harmony in the small-world [J]. Physica A, 2000,285 : 539 - 546.
  • 6Breiger R L, et al. An algorithm for clustering relations data with applications to social network analysis and comparison with mumtidimensional scaling [J]. Journal of Mathematical Psychology, 1975,12: 328-382.
  • 7Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proc. National Acad Sciences, 2001,99 : 7821-7826.
  • 8Zhou H. Distance, dissimilarity index and network community structure[J]. Physical Review E, 2003,67:061901.
  • 9卢开澄.图论及其应用[M].北京:清华大学出版社,1995..
  • 10Capoeci A, et al. Detecting communities in large networks[J]. Physica A, 2005,352 (2 - 4) : 669- 676.

共引文献64

同被引文献31

  • 1许丹,李翔,汪小帆.复杂网络理论在互联网病毒传播研究中的应用[J].复杂系统与复杂性科学,2004,1(3):10-26. 被引量:32
  • 2Albert R,Jeong H,Barabási A L. Diameter of the World Wide Web[J].{H}NATURE,1999,(6749):130-131.
  • 3Faloutsos M,Faloutsos P,Faloutsos C. On Power-law Relationships of the Internet Topology[J].{H}Computer Communication Review,1999,(04):251-262.
  • 4Dunne J A,Williams R J,Martinez N D. Food-web Structure and Network Theory:The Role of Connectance and Size[J].{H}Proceedings of the National Academy of Sciences(USA),2002,(20):12917-12922.
  • 5Camacho J,Guimera R,Amaral L A N. Robust Patterns in Food Web Structure[J].{H}Physical Review Letters,2002,(22):1-4.
  • 6Newman M E J. Detecting Community Structure in Networks[J].The European Physical Journal B,2004,(02):321-330.
  • 7Girvan M,Newman M E J. Community Structure in Social and Biological Networks[J].{H}Proceedings of the National Academy of Sciences(USA),2002,(12):7821-7826.
  • 8Newman M E J,Girvan M. Finding and Evaluating Community Structure in Networks[J].{H}Physical Review E,2004,(02).
  • 9Newman M E J. Fast Algorithm for Detecting Community Structure in Networks[J].{H}Physical Review E,2004,(06).
  • 10Bagrow J P. Evaluating Local Community Methods in Networks[J].Journal of Statistical Mechanics:Theory and Experiment,2008,(05).

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部