期刊文献+

一类Wick型随机KdV-MKdV方程的白噪声泛函解 被引量:2

White noise functional solutions of a Wick-type stochastic KdV-MKdV equation
下载PDF
导出
摘要 利用埃尔米特变换求出了Wick类型的随机广义KdV-MKdV方程的精确解,这种方法的基本思想是通过埃尔米特变换把Wick类型的随机广义KdV-MKdV方程变成广义系数KdV,利用一种变换方法求出方程的精确解,然后通过埃尔米特的逆变换求出方程的精确解。 The basic theory of utilizing Almeter transformation to get the exact solution to Wick-typed stochastic general KdV-MKdV equations set is as follows: first, the Wick-typed stochastic general KdV-MKdV equations set was changed into general coefficient KdV equations set by Almeter transformation; then, the exact solution to the KdV equations set was obtained by the methods of a special transformation; finally, the exact solution to the original equations set was obtained by the Almeter inverse transformation.
作者 朱宏 刘雄
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第5期45-49,53,共6页 Journal of Shandong University(Natural Science)
基金 广东省自然科学基金资助项目(06301315)
关键词 wick类型的随机广义KdV—MKdV方程 随机精确解 白色噪音 埃尔米特变换 Wick-typed elliptical stochastic general KdV-MKdV equations stochastic exact solution, white noise Almeter transformation
  • 相关文献

参考文献5

二级参考文献29

  • 1Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering In: London Mathematical Society Lecture Note Series vol 149( Cambridge: Cambridge University Press).
  • 2Miura M R 1978 Backlund Transformation (Berlin: Springer-Verlag).
  • 3Hirota R 1971 Phys. Rev. Lett. 27 1192.
  • 4Malfliet W 1992 Am. J. Phys .60 659.
  • 5Lou S Y et al 1992 Acta Phys. Sin. 42 182(in Chinese).
  • 6Liu X Q 1998 Appl. Math. -J. Chinese University B 13 25.
  • 7Zhang J F et al 2001 Acta Phys. Sin. 50 1648(in Chinese).
  • 8Yan Z Y et al 1999 Acta Phys. Sin. 48 1957(in Chinese).
  • 9Chan W L and Zhang X 1994 J. Phys. A : Math. Gen . 27 407.
  • 10Chan W L and Li K S 1989 J. Math. Phys. 30 2521.

共引文献223

同被引文献20

  • 1张金良,任东锋,王明亮,方宗德.Davey-StewartsonI的周期波解[J].数学物理学报(A辑),2005,25(2):213-219. 被引量:14
  • 2张金良,李向正,王明亮.随机Kadomtsev-petviashvili方程的精确解[J].工程数学学报,2006,23(2):293-297. 被引量:5
  • 3高娃,包俊东.Wick类型的随机广义KdV的精确解[J].数学的实践与认识,2006,36(10):220-229. 被引量:2
  • 4Holden H, Фksendal U B, Zhang T. Stochastic partial differential equations: a modeling, white noise functional approach [ M ]. Boston: Birhkauser Press, 1996.
  • 5Xie Y C . Exact solutions for stochastic KdV equations [J]. Physics Letters(A) ,2003,310(5- 6) :161 - 167.
  • 6Liu Q, Zhu J M, Wu H Y. The elliptic equation mapping method and its application to stochastic Korteweg-de Vries equation[J]. Journal of the Physical Society of Japan,2006,75 (1):14- 16.
  • 7Chen B, Xie Y C. Periodic-like solutions of variable coefftcient and Wick-type stochastic NLS equations[J].Journal of Computa- tional and Applied Mathematics,2007,203( 1 ) :249 - 263.
  • 8Liu Q. A modified Jacobi elliptic function expansion method and its application to Wick-type stochastic KdV equation [ J ]. Chaos Solitons and Fractals,2007,32(3): 1215- 1223.
  • 9Liu Q,Jia D L, Wang Z H. Three types of exact solutions to Wick- type generalized stochastic Korteweg-de Vries equation[ J]. Chaos Solitons and Fractals,2010,215(10) :3495 - 3500.
  • 10Kim H, Sakthivel R. Exact solutions of wick-type stochastic equations with variable coefftcients [J]. Reports on Mathematical Physics,2011,67(10) :415 - 429.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部