期刊文献+

高阶p-Laplacian算子方程组边值问题多个正解的存在性

The existence of multiple positive solutions for higher order boundary value systems with p-Laplacian operator
下载PDF
导出
摘要 应用锥拉伸和锥压缩不动点理论讨论了含p-Laplacian算子的高阶微分方程组边值问题多个正解的存在性. With the method of compression and expansion of a cone, the existence of multiple positive solutions for higher order boundary value systems with a p-Laplacian operator was investigated,
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2008年第5期50-53,共4页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10571111) 山东省自然科学基金资助项目(Y2006A22)
关键词 P-LAPLACIAN算子 高阶微分方程组 锥拉伸和锥压缩 p-Laplacian operator higher order boundary value systems compression and expansion of cone
  • 相关文献

参考文献3

二级参考文献28

  • 1Liu B , Yu J S. Multiple positive solutions of singular boundary value problems with p-Laplacian, Chinese Annals of Mathematics, 2001, 22A(6): 721-728 (in Chinese).
  • 2Deimling K. Nonlinear functional analysis, New York: Springer, 1985.
  • 3Guo D J. Nonlinear functional analysis, Jinan: Shandong Sci and Tech Press, 1985 (in Chinese).
  • 4Bandle C, Coffmand C V, Marcus M, Nonlinear elliptic problems in annular domains, J Diff Eqs, 1987,69: 322-345.
  • 5Wang H Y, On the existence of positive solutions for semilinear elliptic equation in the annulus, J Diff Eqs, 1994, 109: 1-7.
  • 6Coffmand C V, Marcus M, Existence and uniqueness results for semilinear dirichlet problems in annuli,Arch Rational Mech Anal, 1989, 108: 293-307.
  • 7Bandle C V, Kwong M. K, Semilinear elliptic problems in annular domains, J Appl Math Phys ZAMP,1989, 40: 245-257.
  • 8Wei Z L, Positive solutions of singular boundary value problems of negative exponent emden-fowler equations, Acta Mathematica Sinica, 1998, 41(3): 653-662 (in Chinese).
  • 9Wei Z L, Positive solutions of singular dirichlet boundary value problems, Chinese Annals of Mathematics,1999, 20A(5): 543-552 (in Chinese).
  • 10Gatica J A, Oliker V, Waltman P, Singular nonlinear boundary Value problems for second order ordinary differential equation, J Diff Eqs, 1989, 79: 62-78.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部