期刊文献+

IRA码在全息存储系统中的应用研究

Irregular Repeat Accumulate Codes for Holographic Data Storage System
下载PDF
导出
摘要 前向纠错码(FEC)是全息存储系统提高系统容量的一项关键技术,不规则重复累积码是接近Shannon限且具有线性时间编译码算法的好码。首先研究了全息存储信道,提出了x平方律分布模型与不对称高斯分布模型;并将高性能的IRA码应用于全息存储系统,并进行了仿真研究。仿真结果表明:在全息存储系统中,IRA码的性能优于RS码等传统码,而且x平方律信道下的性能优于高斯信道。 Forward error correction codes have become a practical solution in improving capacity of holographic memory system. Irregular repeat accumulate (IRA) codes have good performance very closed to Shannon limit. IRA code has linear-time encoding and decoding algorithms. In this paper, firstly we study holographic memory channels and present two kinds of models: Chi-square distribution and Gaussian distribution model. Then we apply IRA codes to the holographic memory system. Simulation results show that the performance of IRA outperforms traditional RS codes in holographic memory system. The decoder based on Chi-square also has better performance than that of the decoder based on Gaussian noise assumptions.
机构地区 河南科技大学
出处 《洛阳师范学院学报》 2008年第2期81-83,共3页 Journal of Luoyang Normal University
关键词 全息存储 不规则重复累积码 RS码 高斯分布 holographic memory irregular repeat accumulate Reed-Solomon code Gauss distribution
  • 相关文献

参考文献5

  • 1Claire Gu et al. Bit error rate and statistics of complex amplitude noise in holographic data storage [ J ]. Opt. Lett. 1996, 21(4) : 1070 - 1072.
  • 2Zhou W et al. Interleaving and error correction in volume holographic memory systems [ J ]. Appl. Opc. 1998, 37 : 6951 - 6968.
  • 3Geortzen B J et al. Error correction for volume holographic storage of relational database [ J ]. Opt. Lett. 1995, 20:1655 - 1657.
  • 4Divsalar D et al. Coding theorems for Turbo - like codes [ C ]. Proceedings of the 36th Annual Allerton Conference on Communication Control and Computing, Monticello, IL, USA, 1998, 9:201 -210.
  • 5Jin H et al. Irregular Repeat -Accumulate Codes [ A]. Proc 2nd International Symposium on Turbo codes and Related Topics[ C], Brest, France, 2000, 9:1-8.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部