期刊文献+

一类高斯周期子的快速计算

A Fast Algorithm for Gaussian Periods
下载PDF
导出
摘要 设r=ef+1是奇素数,η0,η1,…,ηe-1是Q上的e次高斯周期子.通过分析分圆多项式和Q(η0)上元素关于整基η0,η1,…,ηe-1的表示,对f=2和f=2q分别给出了高斯周期子极小多项式的快速计算方法.这种方法所有的运算都是整数环上的数值运算. Let r=ef+1 be a prime number and η0,η1,…,ηe-1 the Gaussian periods of degree e. An efficient algorithm is proposed for Gaussian periods when f= 2 and f=2q via analyzing the cyclotomic polynomial and the representation of the integers in Q(η0) by η0,η1,…,ηe-1 respectively. All the operation is numerical in Z.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2008年第3期279-281,共3页 Journal of Wuhan University:Natural Science Edition
基金 国家高技术研究发展计划(863)项目(2001AA141010)
关键词 高斯周期子 极小多项式 原根 分圆多项式 Gaussian periods minimal polynomial primitive roots cyclotomic polynomial
  • 相关文献

参考文献11

  • 1Lidl R, Niederreiter H. Introduction to Finite Fields and Their Applications [M]. Cambridge, England: Cambridge University Press, 1994.
  • 2Washington L C. Introduction to Cyclotomic Fields [ M]. New York: Springer-Verlag, 1996.
  • 3Thaine F. Properties that Characterize Gaussian Periods and Cyclotomic Numbers[J]. Proceedings of the American Mathematical Society, 1996,124 : 1.
  • 4Gupta S, Zagier D. On the Coefficients of the Minimal Polynomails of Gaussian Periods[J]. Mathematics of Computation, 1993,60 : 385-398.
  • 5von zur Gathen J, Nocker M J. Fast Arithmetic with General Gauss Periods[J]. Theor Comput Sci, 2004, 315:419-452.
  • 6Gurak S. Minimal Polynomials for Gauss Periods with f=2[J]. Acta Arith, 2006,121 : 233-257.
  • 7Thaine F. On the p-Part of the Ideal Class Group of Q(ξp + ξp^-1 ) and Vandiver' s Congjecture[J]. Michigan Math J, 1999,12:4769-4790.
  • 8Thaine F. Jacobi Sums and New Families of Irreducible Polynomials of Gaussian Periods[J]. Math Comp, 2001,70 : 1617-1640.
  • 9Jr Lenstra H W,Pomerance C. Primality Testing with Gaussian Periods [DB/OL]. [2007-05-08 ]. http:// www. math. dartmouth.edu/~carlp/ PDF/ complexity12. pdf .
  • 10Cheng Q. On the Construction of Finite Field Elements of Large Order[J]. Finite Fields and Their Appl, 2005,11(3) :358-366.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部