期刊文献+

多孔前驱体渗碳制备LiFePO_4/C 被引量:6

Synthesis of LiFePO_4/C with the carbon-filled porous precursor
下载PDF
导出
摘要 用控制结晶法制备了多孔前驱体FePO4.xH2O,将葡萄糖和Li2CO3渗入到前驱体中,然后通过碳热还原反应合成LiFePO4/C。采用XRD、SEM、恒流充放电和交流阻抗等方法对样品进行了研究。反应剩余的碳分布在LiFePO4颗粒的内部及表面,提高了材料的电化学性能。在620℃下合成的LiFePO4/C的0.1C、0.5C和1C首次放电比容量分别为156mAh/g、139 mAh/g和136 mAh/g,循环30次后的容量衰减率仅为0.64%、2.16%和4.41%。该样品虽然含碳9.74%,但振实密度仍有1.20 g/cm3。 Porous precursor FePO4 · xH2O was prepared by the controlled crystallization method. LiFePO4/C was synthesized via carbothermal reduction using the precursors filled with glucose and Li2CO3. XRD, SEM, galvanostatic charge-diseharge and AC impedance methods were used to study the samples. The residual carbon existed inside and the surface of LiFePO4 particles, enhanced its electrochemical performance. The initial specific discharge capacities of LiFePO4/C synthesized at 620 ℃ at 0.1 C, 0.5 C and 1 C were 156 mAh/g, 139 mAh/g and 136 mAh/g, respectively, and the capacity fading rate were only 0.64%, 2.16% and 4.41% after 30 cycles. The sample had a tap density of 1. 20 g/cm^3 though its carbon content was 9.74%.
出处 《电池》 CAS CSCD 北大核心 2008年第3期163-165,共3页 Battery Bimonthly
基金 国家重点基础研究发展计划(973计划)项目(2007CB613607)
关键词 锂离子电池 正极材料 多孔前驱体 FePO4·xH2O LIFEPO4 Li-ion battery cathode material porous precursor FePO4·xH2O LiFePO4
  • 相关文献

参考文献6

  • 1Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [ J]. Nat Mater, 2002,1(2): 123- 128.
  • 2Croce F, Epifanio A D. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[ J]. Eleetrochem Solid- State Lett,2002,5(3) : A47 - A50.
  • 3Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density[J]. J Electrochem Soc,2002,149(9) : A1184- A1189.
  • 4朱炳权,李新海,张宝,王志兴,郭华军.改进的碳热还原法制备正极材料LiFePO_4/C[J].电池,2005,35(6):445-447. 被引量:8
  • 5杨书廷,刘玉霞,尹艳红,王辉.软模板剂对LiFePO_4/C正极材料性能的影响[J].电池,2007,37(2):95-97. 被引量:8
  • 6Padhi A K, Nanjundaswamy K S, Goodenough J B. Phosphoolivine as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997,144(4) : 1188- 1194.

二级参考文献14

  • 1彭美勋,沈湘黔,王零森,危亚辉.Ni(OH)_2电极交流阻抗与放电容量的关系[J].电池,2004,34(6):408-410. 被引量:2
  • 2杨书廷,赵娜红,尹艳红,董红玉,岳红云,杨金鑫.PAM软模板法合成LiFePO_4/C纳米共生物[J].电池,2005,35(4):263-265. 被引量:15
  • 3Yamada A,Chung S C,Hinokumak.Optimized LiFePO4 for lithium battery cathodes[J].J Electrochem Soc,2001,148(3):A224-A229.
  • 4Huang H,Yin S C,Nazar L F.Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J].Electrochemical and Solid-State Letters,2001,4(10):A170-A172.
  • 5Yang S,Zavalij P Y,Whittingham M S.Hydrothermal synthesis of lithium iron phosphate cathodes[J].Electrochemistry Communications,2001,3(9):505-508.
  • 6Hu H Q,Doeff M M,Kostecki R,et al.Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J].J Electrochem Soc,2004,151(8):A1279-A1285.
  • 7Barker J,Saidi M Y,Swoyer J L.Lithium iron(Ⅱ)phospho-olivines prepared by a novel carbothermal reduction method[J].Electrochemical and Solid-State Letters,2003,6(3):A53-A55.
  • 8Scaccia S,Carewska M,Wisnicwski P,et al.Morphological investigation of submicron FePO4 and LiFePO4 particles for rechargeable lithium batteries[J].Materials Research Bulletin,2003,38(7):1155-1163.
  • 9Andersson A S,Thomas J O.The source of first-cycle capacity loss in LiFePO4[J].J Power Sources,2001,97-98:498-502.
  • 10Chung S Y,Bloking J T,Chiang Y M.Electronical conductive phospho-olivines as lithium storage electrodes[J].Nat Mater,2002,1(2):123-128.

共引文献14

同被引文献39

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部