期刊文献+

一种改进的基于粗集理论的有导师学习方法 被引量:1

A Modified Method of Learning from Examples Based on Rough Set
下载PDF
导出
摘要 属性约简和属性值约简是基于粗集理论进行有导师学习的基础,在分析经典约简算法的基础上,根据粗集理论中属性的依赖度和重要度等性质,提出一种改进的约简方法,以获取简洁的决策规则,从而使有导师学习变得既快捷又准确.并通过实例验证了该算法的正确性和有效性. Attribute reduction and value reduction are the basis of learning from examples based on rough set. This paper studies the problem of attribute reduction firstly. Then, it puts forward an improved reduction algo-rithm based on the dependence and importance of attribute to get compact rules, which improves the efficiency of learning from examples. Lastly, the correctness and effectiveness of the new algorithm are shown bv an examnle.
出处 《昆明理工大学学报(理工版)》 2008年第3期122-124,共3页 Journal of Kunming University of Science and Technology(Natural Science Edition)
关键词 粗糙集 机器学习 属性约简 rough set machine learning attribute reduction
  • 相关文献

参考文献6

  • 1Forsyth R. Machine Learning: Applications in Expert System and Information Retrieval[ M]. New York: John Wiley, 1986.
  • 2Gruber T R. the Acquisition of Strategic Knowledge[ M]. Academic Press, 1989.
  • 3Jelonek J, Krawlec K, Slowinski R. Rough Set Reduction of Attributes and their Domains for Neural Networks [J]. Computer Intelligence, 1995, 11(2):339-347.
  • 4梁吉业,曲开社,徐宗本.信息系统的属性约简[J].系统工程理论与实践,2001,21(12):76-80. 被引量:135
  • 5Pawlak Z. Rough sets[ J]. International Journal of Computer Information Sciences, 1982, 11 (2): 341 -356.
  • 6李敏.数据挖掘在辅助决策系统的应用研究[J].微计算机信息,2004,20(5):96-97. 被引量:36

二级参考文献4

共引文献169

同被引文献7

  • 1王加阳,陈松乔,罗安.可变精度粗集模型研究[J].计算机与数字工程,2005,33(8):53-54. 被引量:2
  • 2曾黄麟.粗集理论及其应用[M].重庆:重庆大学出版社,1995.
  • 3Ziarko W. Variable precision rough set model [ J]. Journal of computer and System Science, 1993, 46:39 -59.
  • 4Ziarko W. Analysis of uncertain information in the framework of variable precision rough sets [ J]. Foundations of Computing and Decision Sci- ences, 1993, 18:381 -396.
  • 5AN A, Shan N, Chan C N, et al. Discovering rules for water demand prediction: an enhanced rough-set approach [ J ]. Engineering Applica- tion and Artificial Intelligence, 1996, 9(6) : 645 -653.
  • 6杨习贝,杨静宇,於东军,吴陈.不完备信息系统中的可变精度分类粗糙集模型[J].系统工程理论与实践,2008,28(5):116-121. 被引量:17
  • 7张明,唐振民,徐维艳,杨习贝.可变粒度粗糙集[J].计算机科学,2011,38(10):220-222. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部