期刊文献+

一类四阶时滞差分方程的全局渐近稳定性 被引量:2

Global Asymptotic Stability for a Fourth-order Rational Difference Equation
下载PDF
导出
摘要 运用半环分析法研究了一类四阶时滞差分方程解的结构以及全局渐近稳定性,所得结果推广了文献[1][5]和[6]中的结果. A method of semi-cycle analysis is used to investigate the rule of trajectory structure of the solution of the fourth-order rational difference equation and its global asymptotic stability. Some known results are generalized.
出处 《甘肃科学学报》 2008年第2期9-12,共4页 Journal of Gansu Sciences
基金 甘肃省自然科学基金(3ZS042-B25-013) 甘肃省教育厅科研基金(0416B-08)
关键词 时滞差分方程 半环 全局渐近稳定性 rational difference equation semi-cyclel global asymptotic stability
  • 相关文献

参考文献8

  • 1X. Li. The Rule of Trajectory Structure and Asymptotic Stability for a Nonlinear Rational Difference Equation[J]. Appl Math Lett, 2006, 19(11):1 152-1 158.
  • 2T Nesemann. Positive Nonlinear Difference Equations:Some Results and Applications[J]. Nonlinear Analysis,2001,47: 4 707-4 717.
  • 3X. Li, D. Zhu. Two Rational Recursive Sequence[J]. Comput Math Appl,2004,47:1 487-1 494.
  • 4X. Li, D. Zhu. Global Asymptotic Stability for Two Recursive Difference Equations[J]. Appl Math Comput, 2004,150:481-492.
  • 5X. Li. Global Behavior for a Fourth Order Rational Difference Equation[J]. Math Anal Appl,2005,312,555-563.
  • 6X. Li. Qualitative Properties for a Fourth-order Rational Difference Equation[J]. Math Anal Appl, 2005,311:103-111.
  • 7李宝麟,马学敏.一类脉冲微分系统与Kurzweil广义常微分方程的关系[J].甘肃科学学报,2007,19(1):1-6. 被引量:9
  • 8张迪,李宝麟.一类线性常微分方程的有界变差解[J].甘肃科学学报,2007,19(1):34-38. 被引量:7

二级参考文献18

  • 1吴从炘,李宝麟.不连续系统的有界变差解[J].数学研究,1998,31(4):417-427. 被引量:33
  • 2闫作茂,刘旭.非线性微分方程边值问题解的存在性[J].甘肃科学学报,2005,17(2):14-16. 被引量:5
  • 3王高雄 周之铭 朱思铭 等.常微分方程[M].北京:高等教育出版社,1978.65-79.
  • 4尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1981.252.
  • 5Lakshimikantham V. Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore: World Scientific, 1989.
  • 6Kurzweil J. Generalized Ordinary Differential Equations and Continuous Dependence on a Parameter[J]. Czechoslovak Math J, 1957,7:418-449.
  • 7Kurzweil J, Vorel Z. Continuous Dependence of Solutions of Differential Equations on a Parameter[J]. Czechoslovak Math J, 1957,23:568-583.
  • 8Kurzweil J. Generalized Ordinary Diffreential Equations[J]. Czechoslovak Math J, 1958,8 : 360-389.
  • 9Schwabik S. Generalized Ordinary Differential Equations[M]. Singapore,World Scientific.1992.
  • 10Schwabik S. Generalized Voherra Integral Equations[J]. Czechoslovak Math J. 1982.32 : 245-270.

共引文献13

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部