摘要
对一类在闭箱上处处有定义的单峰目标函数的全局优化问题,提出一种随机水平值逼近算法,证明了算法的渐近收敛性.数值结果验证了算法的有效性.
We propose a stochastic level-value approximating method (SLVAM) for global optimization problem that is defined in an entire box. We discuss and establish a sufficient condition for the global optimality in probability measure, and prove that the SLVAM algorithm is convergent in probability. Numerical results show its effectiveness.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第3期265-270,共6页
Journal of Shanghai University:Natural Science Edition
基金
上海市重点学科建设资助项目(J50101)
关键词
全局优化
随机水平值逼近
渐近收敛性
global optimization
stochastic level-value approximation
convergence in probability