期刊文献+

纳米铜修饰玻碳电极的制备及其对葡萄糖的催化氧化 被引量:16

Preparation of Nano-Copper Modified Glassy Carbon Electrode and Its Catalytic Oxidation to Glucose
下载PDF
导出
摘要 在表面活性剂十六烷基三甲基溴化铵(CTMAB)的分散作用下,通过恒电位还原CuSO4在玻碳电极上沉积Cu,得到纳米Cu修饰玻碳电极(nano-Cu-GCE),该修饰电极对葡萄糖(Glu)的氧化具有明显的催化作用,利用该催化作用对Glu进行检测,通过研究沉积电位、沉积时间以及检测电位对电流信号的影响,优化了电极的制备条件和Glu的检测条件。沉积电位为-100mV,沉积时间8min。在检测电位400mV下,Glu在1.0×10^-6~3.9×10^-4 mol/L范围内Glu电流与空白溶液电流值之差与其浓度呈线性关系,检出限为2.6×10^-7mol/L(S/N=3),线性回归方程△i(μA)=-1.02—125674.54C(mol/L),r=0.9981。抗坏血酸(AA)、对乙酰氨基酚(AP)和L-半胱氨酸(Cys)对Glu信号几乎无干扰。 Nano-Cu modified glassy carbon electrode (nano-Cu-GCE) was fabricated by reduction of CuSO4 in the presence of cetyhrimethylammonium bromide (CTMAB) through potentiostatic process and its catalytic oxidation to glucose was examined. Optimized potential and time for deposition of Cu is -100 mV, 8 min respectively. Potential used in the determination of glucose is 400 mV. The results indicated that Cu-GCE exhibited an improved catalytic activity on oxidation of glucose compared with the electrode obtained in the absence of CTMAB. Current increment Ai from addition of glucose was linear with concentrations of glucose in the range of 1.0×10^-6 -3.9 ×10^-4 mol/L in 0.1 mol/L NaOH solution with detection limit of 0.26μmol/L (S/N = 3 ). The linear regression equation is △i (μA) = - 1.02 - 125674.54C (mol/L) with r = 0.9981. Aseorbic acid, para-actaminophen and L-cysteine had almost no interference to the glucose response.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2008年第6期839-842,共4页 Chinese Journal of Analytical Chemistry
基金 中国科学院长春应用化学研究所国家重点实验室资助课题
关键词 纳米铜 化学修饰电极 十六烷基三甲基溴化铵 葡萄糖 催化氧化 Nano-copper, chemically modified electrode, cetyltrimethylammonium bromide, glucose, catalytic oxidation
  • 相关文献

参考文献19

  • 1Sun F, Guo Y, Song W, Zhao J, Tang L, Wang Z. J. Cryst. Growth, 2007, 304 (2) : 425 -429.
  • 2Chen L, Zhang D, Chen J, Zhou H, Wan H. Mat. Sci. Eng..A, 2006, 415(1/2) : 156 -161.
  • 3Zhang H, Shen C, Chen S, Xu Z, Liu F, Li J, Gao H. Nanotechnology, 2005, 16(2) : 267 -272.
  • 4张秀娟,张晓宏,吴世康.在表面活性剂溶液中制备不同形貌的芘纳米材料[J].高等学校化学学报,2005,26(7):1330-1333. 被引量:9
  • 5Nikolic N D, Popov K I, Pavlovic L J, Pavlovic M G. Surface & Coatings Technology, 2006, 201:560-566.
  • 6Joshi S S, Patil S F, Iyer V, Mahumuni S. Nanostruct. Mater. , 1998, 10(7) : 1135 - 1144.
  • 7Welch C M, Compton R G. Anal. Bioanal. Chem. , 2006, 384:601 -619.
  • 8ljukic B, Baron R, Salter C, Crossley A, Compton R G. Anal. Chim. Acta, 2007, 590:67 -73.
  • 9曲祥金,张波,艾仕云,李金焕,朱鲁生.纳米金/丝素复合膜修饰电极制备及对对苯二酚的电催化作用[J].分析化学,2007,35(3):386-389. 被引量:5
  • 10Brazill S A, Singhal P, Kuhr W G. Anal. Chem. , 2000, 72(22) : 5542 -5548.

二级参考文献38

  • 1吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用[J].分析化学,2004,32(8):1057-1060. 被引量:36
  • 2Peng X. G., Manna L., Yang W. D. et al.. Nature[J], 2000, 404: 59-62
  • 3Alivisatos A. P.. Science[J], 1996, 271: 933-937
  • 4Peng X. G., Schlamp M. C., Kadavanich A. V. A. P.. J. Am. Chem. Soc.[J], 1997, 119: 7019-7029
  • 5Nalwa H. S., Kasai H., Kamatani H. et al.. Adv. Mater.[J], 1993, 5: 758-760
  • 6Keating C. D., Kovaleski K. K., Natan M. J.. J. Phys. Chem. B[J], 1998, 102: 9404-9408
  • 7Murray C. B., Norris D. J., Bawendi M. G.. J. Am. Chem. Soc.[J], 1993, 115: 8706-8709
  • 8Ahmadi T. S., Wang Z. L., Green T. C. et al.. Science[J], 1996, 272: 1924-1925
  • 9Tanka J.. Bull. Chem. Soc. Jpn.[J], 1963, 36: 1237-1240
  • 10Kelly M. K., Etchegoin P., Fuchs D. et al.. Phys, Rev. B.[J], 1992, 46: 4863-4870

共引文献15

同被引文献171

引证文献16

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部