期刊文献+

一类平面微分系统极限环的存在性和唯一性

Existence and Uniqueness of the Limit Cycles in a Class of Differential System
下载PDF
导出
摘要 将对一系列多项式微分系统的定性分析推广到对一类一般的平面微分系统的定性分析,即对一类平面微分系统dxdt=-yf1(x)+δx-lx2n+1dydt=x2n-1f2(x)(其中f1(x),f2(x)∈C1(-∞,+∞))进行定性分析。在适当的条件下,将该系统化为Li啨nard系统进行研究,构造函数λ(x,y)=∫0xg(ξ)dξ+21y2,对λ(x,y)沿着上述微分方程组求导,运用Poincar啨的切性曲线法得到其极限环的不存在性的一系列充分条件。由А.В.Драгилёв存在性定理得到闭轨存在的充分条件,利用O.K.Smith唯一性定理得到极限环存在唯一性的充分条件。 In this paper we generalize the qualitative analysis about a class of plane differential system from the qualitative analysis about a class of polynomial differential system,i.e.the applicable range of this plane differential system will become very wide.Some known results of this class differential system are special events of this plane differential system.Some sufficient conditions for the existence,no-nexistence and uniqueness of the limit cycles for following plane differential system are discussed dxdt=-yf1(x)+δx-lx2n+1dydt=x2n-1f2(x) with f1(x),f2(x)∈C1(-∞,+∞))On adequacy conditions, we convert this system from plane differential system to Lienard system. We construct a function A (x,y) =∫0xg(ξ)dξ+21y^2,and differentiate about λ (x,y) with this plane differential system. By using the method of Poincar~, some sufficient conditions for on-existence of limit cycles of such system are ob- tained. By applying A. B. ~par^B theorem about existence, some sufficient conditions for the existence of limit cycles of such system are obtained. Furthermore, by applying O. K. Smith's theorem about uniqueness, some sufficient conditions for the uniqueness of limit cycles of such system are obtained.
作者 蒋自国
出处 《重庆师范大学学报(自然科学版)》 CAS 2008年第1期38-41,共4页 Journal of Chongqing Normal University:Natural Science
基金 四川省教育厅自然科学基金(No.2006C056)
关键词 微分系统 极限环 存在唯一性 differential system limit cycles existence uniqueness
  • 相关文献

参考文献7

二级参考文献20

  • 1陈文灯.一类三次系统的定性分析[J].系统科学与数学,1994,14(4):301-308. 被引量:13
  • 2余澍祥.证明极限环存在性与唯一性的Филиллов方法[J].数学学报,1964,14(13):461-470.
  • 3张芷芬,微分方程定性理论,1985年
  • 4叶彦谦,极限环论(第2版),1984年
  • 5秦元勋,微分方程所定义的积分曲线.上,1959年
  • 6叶彦谦,极限环论(第2版),1984年
  • 7Gobber F,Willamowski K D.Liapunov approachto multiple hopf bifurcation[J].J Math Anal Appl,1979,71:333~350.
  • 8丁大正.Lienard方程极限环的存在性[J].应用数学学报,1984,7(2):166-174.
  • 9韩茂安,朱德明.微分方程分支理论[M].北京:煤炭工业出版社,1992.
  • 10Dumortier, Freddy; Li Chengzhi. Quadratic Lienard Equations with Quadratic Damping[J]. Journal of Differential Equations, 1997,139, September 1:41 - 59.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部