期刊文献+

基于模糊均值聚类算法的灰度不均匀脑MR图像的分割 被引量:2

Segmentation of brain MR images with inhomogeneity based on a modified fuzzy C-mean clustering algorithm
下载PDF
导出
摘要 磁共振图像经常被含有缓慢变化的灰度不均匀场所破坏,不均匀场会造成同一组织的灰度发生变化,从而影响计算机辅助诊断的准确性。传统的基于灰度信息的分割方法对具有不均匀场的磁共振图像分割效果往往并不理想。文章改进了基于灰度信息的模糊C均值(FCM)算法,将偏移场模型、代表图像空间信息的邻域控制信息和最小二乘曲面拟合方法有机结合,能同时实现图像的校正和聚类,适用于灰度不均匀脑部磁共振图像的分割,分割精度明显优于已有的基于FCM的分割方法。 Magnetic resonance (MR) images are often corrupted by slowly intensity inhomogeneity for the same tissue over the image domain. The conventional segmentation method for the corrupted MR images is based on the gray information of images and these results are not satisfying. This paper presents a modified fuzzy c-mean (FCM) clustering based segmentation algorithm. It simultaneously carries out the intensity inhomogenity correction while segmenting the images by incorporated the bias model, area control information, curve and surface fitting based on least-squares method. Compared to previous FCM methods, the proposed method is more suitable to segment the corrupted brain MRI data with inhomogeneity and is able to provide higher segmentation accuracy.
出处 《北京生物医学工程》 2008年第3期263-266,共4页 Beijing Biomedical Engineering
基金 安徽省教委重点课题(2006KJ097A) 国家自然科学基金资助
关键词 MR图像分割 模糊C均值聚类算法 最小二乘曲面拟合 图像的空间信息 MR image segmentation fuzzy c-mean clustering surface fitting based on least-squares method spatial information of image
  • 相关文献

参考文献8

  • 1刘秀珍,刘威.MRI主要参数的物理学意义及临床应用基础[J].北京生物医学工程,2003,22(3):219-219. 被引量:2
  • 2Mohamed NA, Sameh MY,Nevin M. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans MED, 2002, 21(3) : 193 - 199.
  • 3李彬,陈武凡.基于模糊聚类空间模型的非均匀MR图像分割[J].医疗卫生装备,2006,27(2):3-4. 被引量:7
  • 4Shen S,Sandham W, Granat M, et al. MRI Fuzzy segmentation of brain tissue using neighborhood attraction with Neural-network optimization. IEEE Transaction on information technology in biomedicine, 2005,9 ( 3 ) :459 - 467.
  • 5Wells WM,Grimson EL, Kikinis R. Adaptive Segmentation of MRI Data. IEEE Trans MED Image, 1996, 15 (8):429 -442.
  • 6Bezdek J, Hall L, Clarke L. Review of MR image segmentation using pattern recognition. Med Phys, 1993, 20:1033 - 1948.
  • 7Chen W,Giger ML. A fuzzy c-means (FCM) based algorithm for intensity inhomogenity correction and segmentation of MR images. IEEE International Symposium, 2004, 2.. 1307 - 1310.
  • 8刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23

二级参考文献23

  • 1强里仁 等.医学影像设备学[M].北京:人民卫生出版社,2001.139-170.
  • 2张泽宝.医学影像物理学[M].北京:人民卫生出版社,2001.108-158.
  • 3曾祥阶.磁共振成像.湖北省第五次放射技术学会资料[Z].,1997.1-10.
  • 4强里仁.医学影像设备学[M].北京:人民卫生出版社,2001.139-170.
  • 5张泽宝 等.医学影像物理学[M].北京:人民卫生出版社,2001.108-158.
  • 6Kanel,M.S,Selim,S.Z.New algorithms for solving the fuzzy clustering problem.Pattern Recognition,1994,27(3):421~428
  • 7M.Singh,P.Patel,D.Khosla.Segmentation of functional MRI by Kmeans clustering.IEEE Trans.Nucl.Sci,1996,43(6):2030~2036
  • 8Dzung L.Pham,Jerry L.Prince.An Adaptive Fuzzy C-Means Algorithm for Image Segmentation in the Presence of Intensity Inhomogeneities.Pattern Recognition Letters,1999,20(1):57~68
  • 9Dzung L.Pham,Jerry L.Prince.Adaptive Fuzzy Segmentation of Magnetic Resonance Image.IEEE Trans.on Med.Im.,1999,18(9):737~752
  • 10W.M.Wells,E.L.Grimson,R.Kikinis.Adaptive Segmentation of MRI Data.IEEE Trans.Med.Im.,1996,15(8):429~442

共引文献29

同被引文献35

  • 1谢逢,罗立民,田雪芹.基于知识的人脑三维医学图像分割显示方法[J].生物医学工程学杂志,1997,14(2):124-127. 被引量:11
  • 2Kim DY,Chung SM,Park JW.Automatic navigation path generation based on two-phase adaptive region-growing algorithm for virtual hagioscope[J].Medical Engineering and Physics,2006,(28):339-347.
  • 3Sedelaar JPM,De la Rosette JJMCH,Beerlage HP,et al.Transrectal ultrasound imaging of the prostate review and perspectives of recent developments[J].Prostate Cancer and Prostatic Diseases,1999,2 (5):241.
  • 4Xuejun Zhang,Masayuki Kanematsu,Hiroshi Fujita,et al.Differentiation of cirrhosis by using 3D hepatic volume ratio of LTW in multi-detector row CT scans and MR imaging[J].International Congress Series,2005,1281:1163-1168.
  • 5Su Ruan.Fuzzy Markovian Segmentation in Application of Magnetic Resonance Images[J].Computer Vision and Image Understanding,2002,85:54-69.
  • 6Chen Wei-jie,Giger ML,Bick U.A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images[J].Academic Radiology,2006,13 (1):63-72.
  • 7Reddick WE,Glass JO,Elkin TD,et al.Automated Segmentation and Classification of Multispectral Magnetic Resonance Images of brain using artificial neural networks[J].IEEE Trans.Medical Imaging,1997,16 (6):911-918.
  • 8Koss EJ,Newman DF,Johnson TK,et al.Abdominal organ segmentation using texture transforms and a Hopfield neural network[J].IEEE Transactions on medical imaging,1999,18(7):640-648.
  • 9Rajab MI,Wolfsan MS Morgan SP.Application of region-based segmentation and neural network edge detection to skin lesions[J].Computerized Medical Imaging and Graphics,2004,28:61-68.
  • 10Wang Shitong,Fu Duan,Xu Min,et al.Advanced fuzzy cellular neural network:Application to CT liverges[J].Artificial Intelligence in Medicine,2007,39:65-77.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部