期刊文献+

黄河流域水资源利用的多属性智能决策 被引量:1

Study on multiple attribute intelligent decision-making of water resources utilization in the Yellow River basin
下载PDF
导出
摘要 针对黄河流域水资源开发利用具有多目标特征,研究引入决策支持向量机,利用升维和线性化的建模思路,实现对决策者偏好结构的自学习,求解全局最优解、回归多属性决策的隐性效用函数。研究将SVM学习功能与案例推理技术相结合,应用专家经验对决策方案的归类识别以及SVM决策偏好再现的启发模式,实现对决策目标系统的自动建模和推理决策功能,通过定量分析和定性推理的结合,弱化了决策过程中人为的因素,实现了流域水资源利用决策的智能化。通过对黄河流域水资源利用规划水平年案例研究,与专家决策的对比验证了模型和方法智能化和精确性。 In order to solve the problem of the multi-object problem of water resources exploitation and utilization of Yellow River, we introduce the support vector machine for decision-making and apply the modelling idea of dimension promotion and linearization. We achieve self-study preference structure of the decision-making and seek for the best solutin and regress utility function of the multiple attribute decision making. We combine SVM self-study and reasoning technology, apply the expert's experience of classifying scheme and SVM enlighten function of decision making reproduction. We achieve automatic modeling to object of decision making, unite the quantitative analysis and qualitative ratiocination, in course of decision-making allay the influence of artificial factor and obtain the intelligent mode in water resources utilization. Through test and study of water resources development and utilization scheme of 2010 and 2020 year-level of Yellow River, contrast with outcome of the expert decision, the accuracy and intelligent level of the SVM model is validated.
出处 《水力发电学报》 CSCD 北大核心 2008年第3期6-11,共6页 Journal of Hydroelectric Engineering
基金 十一五科技支撑项目(2006BAB06B06) 国家自然科学基金项目(50479024)
关键词 水资源 智能决策 支持向量机 多属性 效用函数 water resources intelligent decision-making support vector machine multiple attribute utility function
  • 相关文献

参考文献6

  • 1Churchman C W, Ackoff R L. Introduction to Operations Research[ M]. New York:Weily, 1957.
  • 2MacCrimmon K R. Decision making among multiple-attribute alternatives[ M]. RAND Memorandum RM-4823-ARPA, 1968.
  • 3王强,沈永平,陈英武.基于支持向量机的智能决策方法[J].系统工程,2005,23(10):111-116. 被引量:11
  • 4Smola A J, Schoelkopf B. A tutorial on support vector regression [J]. Statistics and Computing,2004, (14):199-222.
  • 5Platt J. Fast training of support vector machines using sequential minimal optimization [ A ] .Advances in Kernel Methods Support Vector Learning [ C ]. Cambridge : MITPress, 1999.185 - 208.
  • 6赵卫东,李旗号,盛昭瀚.基于案例推理的决策问题求解研究[J].管理科学学报,2000,3(4):29-36. 被引量:65

二级参考文献13

  • 1史忠植,高级人工智能,1998年
  • 2Shi Zhongzhi,Artificial Intelligence Engineering,1997年,11卷,167页
  • 3陈珽.决策分析[M].北京:科学出版社,1987..
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Hwang C L,Yoon K.Multiple attribute decision making:methods and applications[M].New York:Springer-Verlag,1981.
  • 6Vapnik V N, Golowich S, Smola A. Support vector method for function approximation, regression, estimation, and signal processing[A]. Advances in Neural Information Processing Systems[C]. Cambridge,MA:MIT Press,1997:1281~2871.
  • 7Smola A J,Scholkopf B.A tutorial on support vector regression[J]. Statistics and Computing,2004,14(3):199~222.
  • 8Zhao J G,Miao L.Synthetic evaluation of enterprises future profitability based on neural networks[A]. Proceedings of 2003 IEEE Conference on Control Applications[C]. 2003: 358~361.
  • 9Smola A J. Learning with kernels[D]. Berlin:Technische Universit(a)t Berlin,1998.
  • 10.[EB/OL].www.cs.ucl.ac.uk/staff/M.Sewell/winsvm,.

共引文献74

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部