期刊文献+

股指期货风险测算研究--基于混合密度网络模型和CVaR模型的TRM理论应用 被引量:3

下载PDF
导出
摘要 随着《证券公司为期货公司提供中间介绍业务试行办法》、《期货公司风险监管指标管理试行办法》等法规条例的陆续出台,股指期货离我们渐行渐近。股指期货是深化我国金融市场改革和完善多层次资本市场的必经之路,可以预见,其真实价格发现功能,套期保值功能等优势将为期货公司和实行自营业务的证券机构提供诸多便利。但是,由于股指期货同时具有高杠杆性和每日结算等特点,期货公司或从事IB业务的证券公司必须额外注意其风险控制。基于以上考虑,本文希望运用比较新颖和科学的数量方法对股指期货的风险测算进行一些尝试。
作者 周珺 彭蕾
出处 《企业经济》 CSSCI 北大核心 2008年第5期175-177,共3页 Enterprise Economy
  • 相关文献

参考文献4

二级参考文献25

  • 1刘小茂,李楚霖.资产组合的CVaR风险的敏感度分析[J].数学物理学报(A辑),2004,24(4):442-448. 被引量:16
  • 2[1]Lei Xinghui, Sun Xiaoying. Study on the Portfolio Theory of Product Risk Management of Insurance Company. Proceedings of 2000International Conference on Improving Management through University- Industry Partnership. 2000
  • 3[6]S.Travis Pritchet.Risk Management and Insurance Seventh Edition West Publishing Company.1996
  • 4[9]A V.Feigenbaum.Total Quality Control.McGraw-Hill Book Company,1983
  • 5Piotr KULCZYCKI and Henrik SCHIOLER. Estimation of Conditional Quantile Using Neural Networks [ J ],Periodica Polytechnica Scr. El. Eng, 1999, 43(2) :109 - 126
  • 6Schittenkopf, C. and G. Dockner. Forecasting Time-dependent Conditional Densities: a Neural Network Appreach[ R], Vienna University of Economic Studies and Business Administration, 1999 Report Series No. 36.
  • 7Bartlmae, K. and R.A. Rauscher. Measuring Dax Market Risk. a Neural Network Volatility Mixture Approach[ R] , www. gloriamundi. org/var/, 2000
  • 8Dirk Husmeier, Modelling Conditional Probability Densities with Neural Networks[ D], Doctor of Philosophy,Department of Mathematics, King's College London, University of London, 1997
  • 9Andreas Lindemann, Christian L. Dunis, Paulo Lisboa. Probability Distributions, Trading Strategies and Leverage: an Application of Gaussian Mixture Models [ R ]. working papers in Centre for International Banking,Economics and Finance, March 2003, http://www. cibef. com/
  • 10Andreas Lindemann, Christian L. Dunis and Paulo Lisboa. Probability Distributions and Leveraged Trading Strategies: an Application of Gaussian Mixture Models to the Morgan Stanley High Technology 35 Index[ R],working papers in Centre for International Banking, Economics and Finance, April 2004, http ://www. cibef.com/

共引文献5

同被引文献16

  • 1菲利普·乔瑞.风险价值VaR[M].北京:中信出版社,2010.
  • 2周颖,仇晓光.基于CVaR-GARCH-GED模型的单品种期货风险价值预测[J].统计与决策,2007,23(18):95-97. 被引量:5
  • 3Freeman A.A survey of international banking[J].The Economist,1993,4(6):1-37.
  • 4Rockafellar R T,Uryasev S.Optimization of conditional value-at-risk[J].The Journal of Risk,2000,3(2):21-41.
  • 5Sim A B,Zurbruegg R.Dynamic hedging effectiveness in South Korean index futures and the impact of the asian financial crisis[J].Asia-Pacific Financial Markets,2001,8(3):237-258.
  • 6李胜宏,鲍群芳,杨晨.数理金融理论与模型[M].杭州:浙江大学出版社,2011.
  • 7Roekfeller,Uryasev.Value-at-Risk for General Loss Distribution[J] .Journal of Banking&Finance,2002,26 (4):1445-1471.
  • 8Bollerslev.Generalized Autoregressive Conditional Heteroskedasticity[J] .Journal of Economics,1986,31:307-327.
  • 9Nelson.Conditional Heteroskedasticity in Asset Returns:A New Approach,Econometrica 1991:347-370.
  • 10王丽娜,张丽娟.基于CVaR-SV-N模型的股指期货风险度量[J].南方金融,2010(10):60-64. 被引量:7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部