期刊文献+

二阶拟线性抛物问题的混合体积元方法

The Mixed Covolume Method for the Quasilinear Parabolic Problem
下载PDF
导出
摘要 本文讨论拟线性抛物问题的混合体积元方法,并利用该方法得到了其真解与离散解的最优L2模误差估计。 In this paper, we propose the mixed covolume method for the parabolic problem. Optimal order error estimates for the scaler unknown,its gradient and its flux in L^2-norms are obtained.
出处 《山东科学》 CAS 2008年第1期5-11,共7页 Shandong Science
基金 国家自然科学基金(10271068) 山东省中青年科学家科研奖励基金项目(2004BS01009) 山东省自然科学基金(Y2002A01)资助项目
关键词 混合体积元 抛物问题 最优误差估计 mixed covolume parabolic problem optimal order error estimates
  • 相关文献

参考文献10

  • 1EBEL W.Carreier Facilitated Diffusion[J].J.math.Biol,1985(21):243-271.
  • 2PAO C V.Nonlinear Parabolic and Elliotic Equation[M].New York:Plenum,1992.
  • 3ROTHER F.Global Solutions of Reaction-Diffusion Systems,in Lecture Notes in Math[M].Berlin:Springer Verlag,1984.
  • 4CHOU S H,KWAK D Y.Mixed Covolume Methods on Rectangular Grids for the Elliptic Problem[J].SIAM J Numer Amal,2000(37):758-771.
  • 5CHOU S H,KWAK D Y.KIM KWANG Y.A C,eneral Framework for Constructing and Analyzing Mixed Finite Volume Methods on Quadrilateral Grids:The Overlapping Covolume case[J].SIAM J Numer Anal.,2002,39(4):1170-1196.
  • 6KWAK D Y,KIN KWANG Y.Mixed Covolume Methods for Quasi-Linear Second-Order Elliptic problem[J].SIAM J Numer Anal.,1998,(38):1057-1072.
  • 7RUI H X.Symmetric Mixed Covolume Methods for Parabolic Problem[J].Numer Methods for Partial Differential Eq,2002,(18):561-583.
  • 8姜子文,余德浩.Sobolev方程的矩形网格混合体积元方法[J].山东师范大学学报(自然科学版),2005,20(1):1-5. 被引量:4
  • 9朱爱玲,姜子文.抛物型积分微分方程的矩形网格混合体积元方法[J].山东科学,2004,17(2):1-7. 被引量:2
  • 10CHEN Z X.Expanded Mixed Finite Element Methods for Quasilinear Second-Order Eniptic Problem[J].M2 AN,1998,32:501-520.

二级参考文献11

  • 1Jiang Ziwen, Chen Huanzhen. Error estimates for mixed finite element methods for Scbolev equations[J]. Northest Math J,2001,17(3):301 -314.
  • 2Chou S H, Kwak D Y. Mixed covolume methods on rectangular grids for elliptic problems[J].SIAM J Numer Anal,2000, (37):658-711.
  • 3Raviart P A,Thomas J M. A Mixed Finite Element Method for Second Order Elliptic Pttblems, Mathematical Aspects og the Finite Element Method, Lecture Notes in Mathematics[M]. Berlin:Springetr-Verlag, 1977.292 - 315.
  • 4Rui Hcngxing. Symmetric mixed covolume methods for parabolic problems[J].Number Methods Partial Differertial Eq,2002,(18):561-583.
  • 5Wang J. Superconvergence of mixed finite element methods for parabolic equations[J] . Math Modelling Numer Anal, 1987, (21) :327 - 352.
  • 6Lin Y,Thomée V.and Wahlibin L B Ritz-Volterra projections to finite-element space and applications to integro-differential and related equations[J].SIAM J.Nume.Anal,1991(28),1047-1070.
  • 7Jiang Z W.L∞(L2) and L∞(L∞)Error estimates for mixed methods for integro-differential equations of Parabolic type[J].Math.modelling Numer.Anal,1999(33):531-546.
  • 8Chou S H.and Kwak D Y.Mized covolume methods on rectangular grids for elliptic problems[J].SIAM J.Numer.Anal,2000(37):658-711.
  • 9Rui Hongxing.Symmetric mixed covolume methods for parabolic problems[J].Number Methods Partial Differertial Eq.2002(18):561-583.
  • 10Adams R.Sobolev space[M].New York:Academic Press,1975.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部