期刊文献+

基于预处理共轭梯度法的电力系统机电暂态仿真 被引量:2

Electrical-Machanical Transient Simulation of Power System Based on Preconditioned Conjugate Gradient Method
下载PDF
导出
摘要 把基于不完全LU分解的预处理共轭梯度法(ILUCG)用于电力系统暂态稳定仿真计算,提出了一种与矩阵方程直接求解法相结合的混合算法。该方法采用不完全LU分解对暂态稳定计算中的雅可比矩阵进行预处理,以改善其条件数;对预处理之后的方程组,采用改进的共轭梯度法进行迭代求解,在系统收敛困难的情况下,改用直接求解法求解矩阵方程;在迭代过程中,充分利用当前已有的预处理后的等价雅可比矩阵进行迭代计算,而当雅可比矩阵及相关变量变化较大时,重新计算雅可比矩阵并进行相应的预处理操作,以提高算法的效率和计算速度;多个算例表明,对于电力系统暂态仿真的计算,本文算法的计算速度明显优于直接分解求解法和单纯的ILUCG,并易于在并行计算平台上实现,具有一定的实际应用前景。 A hybrid simulation method which combines direct LU decomposition method and the incomplete LU factorization based preconditioned conjugate gradient (ILUCG) method is presented for the power systems transient stability simulation calculation in this paper. The method adopts incomplete LU factorization to precondition on the Jacobian matrix in order to reduce the condition number; and then the linear equations are solved with improved conjugate gradient method, and the direct method would be adopted when convergence of iterative method could not be achieved. During the iteration, the current jacobian matrix being preconditioned on is utilized repeatedly and not to be recalculated until the changing of Jacobian matrix and relative variable is large. The results of the samples demonstrate that, for the transient stability simulation of power system, the calculation speed of the hybrid simulation method is obviously superior to that of direct LU decomposition method and pure ILUCG, since most of the calculation of the hybrid simulation method is done by preconditioned conjugate gradient method, it is easy to be implemented at all kinds of parallel platform and owns the potential to be applied for practice.
出处 《电工技术学报》 EI CSCD 北大核心 2008年第5期93-99,共7页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(50477036)
关键词 电力系统 暂态稳定 预处理共轭梯度法 迭代法 不完全LU分解 :Power systems, transient stability, preconditioned conjugate gradient, iterative method, incomplete LU factorization
  • 相关文献

参考文献13

  • 1De Leon F, Semlven A. Iterative solvers in the Newton power flow problem:preconditioners, inexact solutions and partial Jacobian updates[J]. IEE Proc-Gener. Transm. Distrib., 2002, 149(4): 479-484.
  • 2Alves A B, Asada E B, Monticelli A. Critical evaluation of direct and iterative methods for solving ax=b systems in power flow calculations and contingency analysis[J]. IEEE Trans. on Power Systems, 1999, 14(2): 702-708.
  • 3Chaniotis D, Pai M A. Iterative solver techniques in the dynamic simulation of power systems[C]. Power Engineering Society Summer Meeting, IEEE, 2000, 1: 609-613.
  • 4Saad Y, Schultz M H. GMRES: A generalized mininum residual algorithm for solving non-symmetric linear systems[J]. SIAM J on Sci Statist Comput, 1986(7): 856-869.
  • 5张秀敏,苑津莎,徐永生.电磁场分析中大型稀疏方程组迭代解法的改进[J].华北电力大学学报(自然科学版),2003,30(3):34-38. 被引量:5
  • 6李滨,郑赟,叶以正,肖立伊,黄国勇.一种LU分解与迭代法的结合策略及算法实现[J].计算机工程与设计,2002,23(3):16-21. 被引量:6
  • 7韩晓言,韩祯祥.预处理并轭梯度法在电力系统暂态稳定分析并行算法中的应用研究[J].电力系统及其自动化学报,1996,8(2):1-6. 被引量:3
  • 8Dag H, Semlyen A. A new preconditioned conjugate gradient power flow[J], IEEE Trans. on Power Systems, 2003, 18(4): 1248-1255.
  • 9Dag H, Alvarado F L. The effect of ordering on the preconditioned conjugate gradient method for power system applications[C], Proc. North Amer. Power Symp., 1994: 202-209.
  • 10刘洋,周家启,谢开贵,赵渊,陈炜俊,胡博.基于Beowulf集群的大规模电力系统方程并行PCG求解[J].电工技术学报,2006,21(3):105-111. 被引量:16

二级参考文献37

  • 1韩晓言,韩祯祥.电力系统暂态稳定分析的并行算法研究[J].电力系统及其自动化学报,1995,7(3):1-11. 被引量:3
  • 2金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,1998.219.
  • 3李春光.求解大型稀疏线性方程组迭代方法的一些研究:博士学位论文[M].西安交通大学,1999..
  • 4曾璇 石建磊 等.基于VDHL-AMS的开关电流功能块电路的行为级建模方法[J].中国学术期刊文献(科技快报专栏),2000,6(10):1308-1311.
  • 5刘建新.大型电力变压器类设备中静态电磁场问题的研究[D].保定:华北电力大学,1994.
  • 6Alan G, Liu J. Computer Solution of Large Sparse Positive Definite Systems. New York:Prentice-Hall, 1981
  • 7Eisenstat S C, Walker H F. Choosing the Forcing Terms in an Inexact Newton Methods. SIAM J on Sci Comput, 1996, 17(1):16~32
  • 8Saad Y. Iterative Methods for Sparse Linear Systems. Boston:PWS Pub Co, 1996
  • 9Saad Y. ILUT:A Dual Threshold Incomplete Factorization. Numer Linear Algebra Appl, 1994, (1):387~402
  • 10Flueck A J, Chiang H D. Solving the Nonlinear Power Flow Equations with an Inexact Newton Method Using GMRES. IEEE Trans on Power Systems, 1998, 13(2):267~273

共引文献66

同被引文献32

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部