期刊文献+

一种微小视频变化的移动检测方法

A motion detection method for tiny changes in a dynamic video surveillance system
下载PDF
导出
摘要 提出了一种用于数字视频监控系统中运动物体检测和报警的优化背景差法。针对该算法本文进行了详细的分析,并设计了算法流程。用此算法重建背景图像以及用图像差分算法计算像素改变比例,能监测慢速、微量变化的运动物体。最后与相邻帧差法进行了实验比对,实验结果表明该方法有明显的优势。优化背景差法实现简单、快速、有效,适用于对重点区域进行微小移动监测的监控系统。 An optimized background difference algorithm for moving object detection and alert is proposed for use in a real-time video surveillance system and its design analyzed in detail. Tiny changes in a moving object can be detected by rebuilding the image background using the algorithm and calculating the ratio of pixel changes by means of the difference image algorithm. Experiments showed that the method is superior to the neighbour frame difference algorithm. The algorithm proposed in this paper is simple and effective and it can be used for regional focus in video surveillance systems in order to detect slow and tiny changes.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期93-96,共4页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
关键词 移动检测 背景重建 优化背景差法 微小变化 motion detection rebuild background image optimized background difference algorithm tiny change
  • 相关文献

参考文献5

二级参考文献64

  • 1[1]Freer J A,Beggs B J,Fernamdez-Canque H L,Chevrier F,Goryashko A.Automatic intruder detection incorporating intelligent scene monitoring with video surveillance[J].European Conference on Security and Detection,1997,(4):109-113.
  • 2[2]Takeyuki Takano,Katsumi Ushita.Intruder detection system by image processing[J].IEEE Annual International Carnahan Conference on Security Technology, Proceedings,1994,(10):12-14.
  • 3[3]Jeff Smith,Brett Peters.Prototype software model for designing intruder detection systems with simulation[J].Proceedings of SPIE - The International Society for Optical Engineering,1998,3369(4):101-108.
  • 4[4]Huang P S, Harris C J, Nixon M S.Recognizing humans by gait via parametric canonical space[J].Artificial Intelligence in Engineering, 1999, 13: 359-366.
  • 5Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 6Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 7Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 8Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 9Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 10Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.

共引文献284

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部