期刊文献+

反应离子深刻蚀中硅/玻璃结构footing效应的实验研究(英文) 被引量:1

Experimental Study on the Footing Effect for SOG Structures Using DRIE
下载PDF
导出
摘要 针对反应离子深刻蚀中硅/玻璃键合结构的footing效应问题,用实验方法进行了研究.通过2~4和0.01~0.03Ω·cm两种不同电导率的硅结构过刻蚀的对比,以及对50,20和5μm三组不同间隙高度的器件结构过刻蚀的对比,揭示了单晶硅结构的电导率及器件结构和玻璃衬底间隙高度对footing效应的影响.实验结果显示电导率为2 ~4Ω·cm的硅结构比电导率为0.01 ~0.03Ω·cm的硅结构footing效应严重;硅结构和玻璃衬底的间隙为5μm的比间隙为20和50μm的footing效应严重.对这一现象的理论分析认为,被刻蚀的硅的电导率越高,硅结构与玻璃衬底的间隙越大,footing效应越不明显.本文中不同电导率和不同间隙高度的实验对比结果可以为硅微传感器材料类型的选取和器件的优化设计提供参考. This paper experimentally studies the effects of the conductivity of a silicon wafer and the gap height between silicon structures and glass substrate on the footing effect for silicon on glass (SOG) structures in the deep reactive ion etching (DRIE) process. Experiments with gap heights of 5,20, and 50μm were carried out for performance comparison of the footing effect. Also,two kinds of silicon wafers with resistivity of 2-4 and 0.01-0. 0312Ω· cm were used for the exploration. The results show that structures with resistivity of 0.01 - 0. 0312Ω· cm have better topography than those with resistivity of 2-4Ω· cm; and structures with 50μm-high gaps between silicon structures and glass substrate suffer some- what less of a footing effect than those with 20μm-high gaps,and much less than those with Stem-high gaps. Our theoretical analysis indicates that either the higher conductivity of the silicon wafer or a larger gap height between silicon structures and glass substrate can suppress footing effects. The results can contribute to the choice of silicon type and optimum design for many microsensors.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第6期1088-1093,共6页 半导体学报(英文版)
关键词 footing效应 硅/玻璃键合 反应离子深刻蚀 footing effect silicon on glass deep reactive ion etching
  • 相关文献

参考文献15

  • 1Alper S E,Akin T. A single-crystal silicon symmetrical and decoupied MEMS gyroscope on an insulating substrate. J Microelectromech Syst, 2005,14 : 707.
  • 2Jeon S H,Lee J Y,Jung H K,et al. Two-mass system with wide , bandwidth for SlOG (silicon on glass) vibratory gyroscopes. Transducers' 05, Seoul,2005 : 539.
  • 3Yang Z C,Wang C S, Yan G Z, et al. A bulk micromachined lateral axis gyroscope with vertical sensing comb capacitors. Transducers' 05, Seoul,2005 : 121.
  • 4Wang Y Y, Wu G Y, Hao Y L, et al. Study of silicon-based MEMS technology and its standard process. ACTA, Electronics Sinca, 2002,30(11) : 1577.
  • 5Chung C K. Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system. J Micromech Microeng, 2004,14:656.
  • 6Lee J Y,Kim S H,Lim H T,et al. Electric spring modeling for a comb actuator deformed by the footing effect in deep reactive ion etching. J Micromech Microeng, 2003,13 : 72.
  • 7Ayon A A, Ishihara K, Braff R A, et al. Microfabrication and testing of suspended structures compatible with silicon-on-insulator technology. J Vac Sci Technol B, 1999,17:1589.
  • 8Ishihara K, Yung C F, Ayon A A. An inertial sensor technology using DRIE and wafer bonding with interconnecting capability. J Microelectromech Syst, 1999,8 : 403.
  • 9Morioka H, Matsunaga D, Yagi H. Suppression of notching by lowering the bias frequency in electron cyclotron resonance plasma with a divergent magnetic field. J Vac Sci Technol A, 1998,16:1588.
  • 10Seok S,Lee B, Kim J,et al. A new compensation method for the footing effect in MEMS fabrication. J Micromech Microeng, 2005,15:1791.

同被引文献9

  • 1X H Li, D C Zhang, X M Yu. Study the influence of heat transfer on notching phenomenon[ A ]. Proceedings of the 3rd International Conference on Semiconductor Technology [ C ]. Shanghai: PICST, 2004.345 - 348.
  • 2T Matsuura, M Chabloz, J Jiao. A method to evade silicon backside damage in deep reactive ion etching for anodically bonded glass-silicon structures[J]. Sensors and Actuators A, 2001,89:71 - 75.
  • 3Y Yoshida, M kumagai, K Tsutsumi. Study of silicon backside damage in deep reactive ion etching for bonded silicon-glass structures[J]. Microsystem Technologies, 2003,9(3) : 167 - 170.
  • 4J Fan, Y Zhu, Z C Yang, J Zhou, X S Liu, G Z Yan. An improved method employed in anodic bonded glass-silicon gyroscopes to avoid footing effect in DRIE[ A ]. Proceeding of the 7th Intematioal Conference on Solid-State Integrated Circuits C]. Beijing: PICSSI, 2004. 1896 - 1899.
  • 5C H Kim, Y K Kim. Prevention method of a notching caused surface charging in silicon reactive ion etching [ J ]. J Micromech Microeng, 2005,15: 358 - 361.
  • 6Y Stm, D Piyabongkam, A Sezen, B J Nelson, R Rajarnani. A high-aspect-ratio two-axis electrostatic microactuator with extended travel range[J].Sensors and Actuators A,2002,102:49- 60.
  • 7A Bertz, M Kuchler, R Knofler, T Gessner. A novel high aspect ratio technology for MEMS fabrication using standard silicon wafers[J].Sensors and Actuators A,2002,97 - 98:691 - 701.
  • 8M C Lee, S J Kang, K D Jung, S H Choa, Y C Cho. A high yield rate MEMS gyroscope with a packaged SiOG process[ J]. J Micromech Microeng,2005,15:2003 -2010.
  • 9H W Qu, H K Xie. Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures[J]. J Microelectromech Syst. 2007, 16:1152 - 1160.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部