期刊文献+

非线性波作用下非对称沙纹床面流场特性数值分析 被引量:1

Numerical analysis of characteristics of fluid field over asymmetric rippled bed under nonlinear wave
下载PDF
导出
摘要 海床上的沙纹对泥沙输运和波浪衰减有着重要的影响.通过数值波浪水槽研究了非线性波作用下非对称沙纹床面底层的流动特性.控制方程为雷诺时均方程和k-ε紊流模型.入射波为椭圆余弦波,采用PLIC-VOF法追踪自由表面.通过数值模拟得到了不同波浪条件下的瞬时速度场和涡量场.计算结果表明:非线性波作用下,非对称沙纹床面两侧的涡动强度不相等,涡量值与波浪参数密切相关;波浪非线性增强,涡量值增大,最大涡量值对应的相位角减小;涡量值大小的变化与外流场速度变化不同步达到最大,随着Ursell数增大,涡量值在小相角下达到最大值. Ripples are dumping and sediment common features in offshore coastal transport. The distributions of the areas, and they are flow fields induced important for wave by nonlinear water waves near a natural asymmetric rippled bed are investigated by absorbed numerical wave tank. The gover wave ning mak equations are Reynolds time-averaged equations and two equation κ-ε model. A piston-type er is set up in the computational domain to produce incident cnoidal waves and the free surface is traced through the PLIC-VOF (piecewise linear interface construction-volume of fluid). A complete process of vortex formation, evolvement and disappearance was observed by the numerical model. By analyzing the circulation and trajectory of vortices with varied phases, the influences of wave characteristics on the flow closed to the asymmetric ripple beds have been carried out. The numerical results indicate that the wave parameters determine the characteristics of vortex field. With the nonlinearity improved, the vortex intensity becomes stronger. It reaches their maximum value shortly after the free stream velocity begins to decelerate. The vortex and the wave velocity reach their maximum values at different time. With the increasing of Ursell number, vortex value reaches its maximum value at small phase angle.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第3期423-429,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(50479015) 教育部新世纪优秀人才支持计划资助项目(NCET-05-0710)
关键词 非线性波 非对称沙纹 涡动 数值分析 nonlinear waves asymmetric ripple vortex numerical analysis
  • 相关文献

参考文献15

  • 1DU TOIT C,SLEATH J F A.Velocity measurements close to ripple beds in oscillatory flow[J].Journal of Fluid Mechanics,1981,112:71-96
  • 2EARNSHAW H C,GREATED C A.Dynamics of ripple bed vortices[J].Experiments in Fluids,1998,25:265-275
  • 3VOROPAYEV S I,MCEACHERN G B,BOYER D L,et al.Dynamics of sand ripples and burial/scouring of cobbles in oscillatory flow[J].Applied Ocean Research,1999,21:249-261
  • 4林缅,袁志达.振荡流作用下波状底床上流场特性的实验研究[J].地球物理学报,2005,48(6):1466-1474. 被引量:5
  • 5DOERING J C,BARYLA A J.An investigation of the velocity field under regular and irregular waves over a sand beach[J].Coastal Engineering,2002,44:275-300
  • 6FARACI C,FOTI E.Geometry,migration and evolution of small-scale bedforms generated by regular and irregular waves[J].Coastal Engineering,2002,47:35-52
  • 7MARIN F.Eddy viscosity and Eulerian drift over rippled beds in waves[J].Coastal Engineering,2004,50:139-159
  • 8SEKIGUCHI T,SUNAMURA T.Effects of bed perturbation and velocity asymmetry on ripple initiation:wave-flume experiments[J].Coastal Engineering,2004,50:231-239
  • 9FREDSE J,ANDERSEN K H,SUMER B M.Wave plus current over a ripple-covered bed[J].Coastal Engineering,1999,38:77-221
  • 10BARR B,SLINN D.Numerical simulation of turbulent,oscillatory flow over sand ripples[J].Journal of Geophysics Research,2004,109(C9):1-19

二级参考文献36

  • 1马福喜.三维带自由表面强紊动水流的数值模拟:博士论文[M].河海大学,1992,6..
  • 2蒋昌波 白玉川 曾谦.沙纹床面振荡流底层大尺度涡动结构演化的数值模型及动态演示系统研究[A]..第六界全国流体力学会议[C].北京:气象出版社,2001.341-344.
  • 3Ayrton H. The origin and growth of the ripple mark[J]. Proc Roy Soc of London, 1910, A84: 285.
  • 4Du Toit C, S]eath J F A. Velocity measurements close to ripple beds in oscillatory flow[J]. J Fluid Mech, 1981, 112:71 -96.
  • 5Sato S, et al. Geometry of sand ripples and net sand transport rate due to regular and irregular oscilintory flows[J]. Coastal Engineering in Japan, 1988, (30) :90 - 98.
  • 6Ikeda S, Horikawa K, Nakamura H, et al. Oscillatory boundary layer over a sand ripple model[J]. Coastal Eng in Japan, 1991, (32) : 15 -29.
  • 7Marin F. Velocity and turbulence distributions in combined wave-current flowa over a rippled bed[J]. J Hydraulic Res, 1999, 37:501 -519.
  • 8Sawamoto M. Stability theory of sand ripples due to wave action[J]. Coastal Eng In Jap, 1986,(29):120- 128.
  • 9Blondeaux P. Sand ripples under sea waves. Part I Ripple formation[J]. J Fluid Mech, 1990, 218: 1 - 17.
  • 10Vittori G, Blondeauax P. Sand ripples under sea waves. Part 2, Finite amplitude development[J]. J Fluid Mech, 1990, 218:19- 39.

共引文献40

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部