期刊文献+

一种基于卫向量的简化支持向量机模型 被引量:1

A model for simplification SVM based on guard vectors
下载PDF
导出
摘要 针对支持向量机(SVM)在处理大规模训练集时,训练速度和分类速度变慢的缺点,提出了一种基于卫向量的简化SVM模型.用对偶变换及求解线性规划方法提取卫向量,缩小训练集规模;在此基础上对训练得到的支持向量集,用线性相关性去除冗余支持向量,从而达到简化目的.对UCI标准数据集的实验表明:在保证不损失分类精度的前提下,该模型一定程度上改进了传统SVM,缩短了学习时间,取得了良好的效果. A simplification SVM model based on guard vectors is proposed for overcoming the slow speed of training and classification for large scale training set. In order to simplify SVM, the methods of dual transform and linear programming are used to distill guard vectors; based on that, the linearly dependent support vectors are eliminated from SV set. The experiments on the UCI database are done with this algorithm. Results show that in the condition of undeclined correct rate, the running time of this model is reduced and better performance than the standard SVM is achieved.
作者 王宇 毛玉欣
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2008年第3期446-450,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(重点项目70431001)
关键词 卫向量 支持向量机 训练集 支持向量集 guard vector support vector machine training set support vector set
  • 相关文献

参考文献12

  • 1CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 2MULLER K R,MIKA S,RATSCH G,et al.An introduction to Kernel-based learning algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201
  • 3王晓丹,王积勤.支持向量机训练和实现算法综述[J].计算机工程与应用,2004,40(13):75-78. 被引量:56
  • 4PLATT J C.Sequential minimal optimization:a fast algorithm for training support vector machines[R]//Technical Report MSR-TR-98-14.Seattle:Microsoft Research,1998
  • 5JOACHIMS T.Making large-scale SVM learning practical[C]//Advances in Kernel Method:Support Vector Learning.Cambridge:MIT Press,1998
  • 6YANG M H,AHUJA N.A geometric approach to train support vector machines[C]//Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition.Hilton Head Island:IEEE,2000
  • 7OSUNA E E,GIROSI F.Reducing the run-time complexity of support vector machines[M]//Advances in Kernel Method:Support Vector Learning.Cambridge:MIT Press,1999
  • 8BURGES C.Simplified support vector decision rules[C]//Proceedings of the 13th International Conference on Machine Learning.CA:Morgan Kaufmann,1996
  • 9STITSON M O,WESTON J A E,GAMMERMAN A,et al.Theory of support vector machines[R]//Technical Report CSD-TR-96-17.London:Royal Holloway University of London,1996
  • 10OSUNA E,FREUND R,GIROSI F.Support vector machines:training and applications[R]//AIM-1602.Cambridge:MIT AI Lab,1997

二级参考文献24

  • 1Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag, 1995
  • 2Cortes C,Vapnik V.Support vector networks[J].Machine Learning,1995;20: 273~297
  • 3Joachims T.Text categorization with support vector machines:Learning with many relevant features[C].In :Proceedings of the European Conference on Machine Learning,Berlin:Springer, 1998:137~142
  • 4Gish H,Schimdt M.Text-indepentent speaker identification[J].IEEE Trans on Signal Processing Magazine,1994;42(1):18~32
  • 5Osuna E,Freund R,Girosi F.Improved training algorithm for supportvector machines[C].In:7th IEEE workshop on Neural Networks for Signal Processing, NNSP′97, IEEE, 1997: 276~285
  • 6Bernd Heisele et al. Hierarchical classification and feature reduction for fast face detection with support vector machines[J].Pattern Recognition, 2003; 36: 2007 ~2017
  • 7L Walavalkar et al. Support vector learning for gender classification using audio and visual cues[J].International Journal of Pattern Recognition and Artificial Intelligence, 2003; 17 (3) :417~439
  • 8Mike Fugate,James R Gattikers. Computer intrusion detection with classification and anomaly detection using SVMs[J].International Journal of Pattern Recognition and Artificial Intelligence,2003;17(3):441~458
  • 9Mukherjee S.Classifying Microarray Data Using Support Vector Machines[C].In:A Practical Approach to Microarray Data Analysis,Kluwer Academic Publishers,Boston,MA,2003-09:166~185
  • 10Brown M,Lewis H G,Gunn S R.Linear spectral mixture models and support vector machines for remote sensing[J].IEEE Trans on Geoscience and Remote Sensing,1998

共引文献201

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部