期刊文献+

基于子带收敛因子阈值法的轮廓波消噪方法 被引量:1

Contourlet Transform Denoising Method Based on Subbands Convergence Factor Threshold
下载PDF
导出
摘要 提出了适用于轮廓波变换消噪中确定子带阈值收敛因子的样本噪声响应法。该方法根据标准高斯白噪声作用在每个子带上的统计特性,得到每个子带的收敛因子;使用该收敛因子对标准的3σ(或4σ)准则进行修正来确定不同尺度不同方向子带的硬阈值;并在轮廓波域进行子带硬阈值处理之后,使用自适应维纳滤波进行后处理。实验结果表明,本文提出的消噪方法,对含有高斯白噪声的图像进行消噪,无论在峰值信噪比方面还是在视觉效果方面均可以取得比较满意的消噪效果;在一定的范围内,采用较小的样本图像计算子带收敛因子,在加快消噪速度和减小内存需求量的同时,仍然可以保持满意的消噪结果。 Sample noise response method used to determine subband threshold factors of contourlet transform denoising is proposed. By the method, we can obtain the convergence factor of each subband according to every subband statistical character driven by a standard Gaussian white noise. The hard threshold of every directional subband of each scale is determined by modifying the 3a (or 40) rule in terms of corresponding effect factor. The post-processing can be carried out by adaptive Wiener filtering followed subband hard threshold in contourlet domain. Experimental results show that, using the denoising method proposed, for images corrupted by Gaussian white noise, the denoising results including Peak Signal-noise Ratio (PSNR) and quality of visual effect are satisfying. To calculate the convergence factors using smaller sample image can accelerate the denoising speed and reduce the requirement of the memory for the program, and the denoising results can be kept satisfied.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第6期63-67,83,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60572048/F010204)
关键词 轮廓波变换 维纳滤波 峰值信噪比 子带收敛因子 高斯白噪声 contourlet transform Wiener filter PSNR subbands convergence factors Gaussian white noise
  • 相关文献

参考文献12

  • 1Mallat S. A Wavelet Tour of Signal Processing [M]. Orlando: Academic Press, 1999.
  • 2Daubechies I. Ten Lectures on Wavelets [M]. Philadelphia, PA: SIAM, 1992.
  • 3Le Pennec E, MaUat S. Sparse Geometric Image Representations With Bandelets [J]. IEEE Trans. on Image Process, 2005, 14(4): 423-438.
  • 4Candes E J, Donoho D L. Continuous curvelet transform: Ⅱ. Discretization and frames [J]. Applied and Computational Harmonic Analysis, 2005, 19(2): 198-222.
  • 5Do M N, Vettedi M. The finite ridgelet transform for image representation [J]. IEEE Trans. on Image Process, 2003, 12(1): 16-28.
  • 6Do M N, Vetterli M. The Contourlet Transfo:rn: An efficient directional multiresolution image representation [J]. IEEE Trans. lmage Proeess, 2005, 14(12): 2091-2106.
  • 7Jean-Luc Starck, Candes E J, Donoho D L. The curvelet transform for image denoising [J]. IEEE Trans. on Image Process, 2002, 11(6): 670-684
  • 8Le Y, Do M N. A new contourlet transform with sharp frequency localization [C]//Proc. of IEEE Int. Conf. on Image Proc. Atlanta,USA: [s.n.], 2006: 1629-1632.
  • 9Burt P J, Adelson E H. The laplacian pyramid as a compact image code [J]. IEEE Trans. on Commun, 1983, 31(4): 532-540.
  • 10Bamberger R H , Smith M. A filter bank for the directional decomposition of images: theory and design [J]. IEEE Trans. Signal Proc, 1992, 40(4): 882-893.

同被引文献11

  • 1Mallat S. A Wavelet Tour of Signal Processing [M]. Orlando: Academic Press, 1999.
  • 2Daubechies I. Ten Lectures on Wavelets [M]. Philadelphia, PA: SIAM, 1992.
  • 3Le Pennec E, Mallat S. Sparse geometric image representations with bandelets [J]. IEEE Transactions on Image Processing (S0041-624X), 2005, 14(4): 423-438.
  • 4Candes E J, Donoho D L. Continuous curvelet transform: Ⅱ. discretization and frames [J]. Applied and Computational HarmonicAnalysis(S1063-5203), 2005, 19(2): 198-222.
  • 5Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing (S0041-624X), 2005, 14(12): 2091-2106.
  • 6Burt P J, Adelson E H. The Laplacian pyramid as a compact image code [J]. IEEE Transactions on Communications (S0090-6778), 1983, 31(4): 532-540.
  • 7Bamberger R H, Smith M J T. A filter bank for the directional decomposition of images: theory and design [J]. IEEE Transactions on Signal Processing(S1053-587X), 1992, 40(4): 882-893.
  • 8Chen D, Li Q. The use of complex contourlet transform on fusion scheme [C]// Proceedings of World Academy of Science, Engineering and Technology, Prague, Czech Republic, August 26-28, 2005: 342-347.
  • 9Selesnick I W, Baraniuk R G, Kingsbury N C. The dual-tree complex wavelet transform [J]. IEEE Signal Processing Magazine(S0740-7647), 2005, 22(6): 123-151.
  • 10DAI Shao-wei, SUN Yan-kui, TIAN Xiao-lin, et al. Image denoising based on complex contourlet transform [C]// Proceedings of International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, Nov 2-4, 2007, 4:1742-1747.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部