期刊文献+

连续SiC(Al)纤维的耐超高温性能及其机理 被引量:4

Properties and Mechanism of High Temperature Resistance of Continuous SiC(Al) Fibers
下载PDF
导出
摘要 以有机金属聚合物聚铝碳硅烷为原料,利用先驱体转化法制备出连续SiC(Al)纤维.采用一系列分析测试对纤维的组成、结构以及耐超高温性能进行了表征,通过与Nicalon纤维的比较,对连续SiC(Al)纤维的耐超高温机理进行了研究.结果表明,连续SiC(Al)纤维具有优异的耐超高温性能,在1800℃氩气中处理1h后,纤维的强度保留率为80%左右;元素分析和27AlMAS核磁共振等分析表明,连续SiC(Al)纤维为近化学计量比的SiC纤维,纤维中微量的铝元素以Al—O和Al—C键两种形式存在;在超高温条件下,两种不同存在形式的铝均能够抑制纤维中晶粒的长大.纤维具有近化学计量比的组成和铝元素在高温条件下对于晶粒长大的抑制,是连续SiC(Al)纤维具有优异耐超高温性能的原因. Continuous SiC(A1) fibers were prepared by polymer-derived method using organometallic polymer polyaluminocarbosilane (PACS). The composition, structure, and properties of continuous SiC(A1) fibers were investigated by a series of analyses. The mechanism of high temperature resistance of the fibers was discussed through the comparison between Nicalon fibers and continuous SiC(A1) fibers. The results showed that the fibers exhibited excellent thermal stability. After heat treatment at 1800 ℃ in argon for 1 h, the fibers maintained about 80% of the initial strength. Element analysis and ZTA1 MAS NMR indicated that the composition of continuous SiC(A1) fibers was close to stoichiometric ratio and the aluminum existed in the form of A1--O and A1--C bonds. The aluminum that existed in different manners could restrain the growth of grain of the fibers at super-high temperature. The high-temperature resistance of continuous SiC(A1) fibers was based on two factors: the near stoichiometric composition and the inhibition of the aluminum to the growth of the grain.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第6期971-976,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(59972042)资助项目
关键词 耐超高温 连续SiC(Al)纤维 性能 机理 High-temperature resistance Continuous SiC(A1) fibers Property Mechanism
  • 相关文献

参考文献18

二级参考文献52

  • 1郑春满,李效东,余煜玺,曹峰.先驱体转化法制备耐高温Si-Al-C-O纤维[J].材料工程,2004,32(12):25-28. 被引量:9
  • 2郑春满,李效东,余煜玺,赵大方,曹峰.高温烧结制备含铝碳化硅纤维[J].硅酸盐学报,2006,34(5):531-535. 被引量:1
  • 3王浩,李效东,肖加余,金东杓.三维有序SiC空心球的制备及表征[J].高等学校化学学报,2006,27(6):1007-1011. 被引量:3
  • 4王应德,冯春祥,宋永才,邹治春,廖杰.碳化硅纤维连续化工艺研究[J].宇航材料工艺,1997,27(2):21-25. 被引量:12
  • 5[2]Baldus, H. P.; Jansen, H. Angelwandte Chemie, 1997, 36:328
  • 6[3]Lipowitz, J.; Rabe, J. A.; Nguyen, K. T.; Orr, L. D.;Androl, R. R. Ceramic Engineering and Science Procedure,1995, 16:55
  • 7[4]Lipowitz, J. Carbide, nitride and boride materials synthesis and processing. Weimer, A. W. ed. New York: Chapman & Hall,1997a: 433 ~ 455
  • 8[5]Babonneau, F.; Soraru, G. D.; Thorne, K. J.; Mackenzie J.D. Journal of American Ceramic Society, 1991, 74 (7): 1725
  • 9[6]Soraru, G. D.; Mercadini, M.; Maschio, R. D.; Tualelle,F.; Babonneau, F. Journal of American Ceramic Society,1993, 76(10): 2595
  • 10[7]Ishikawa, T.; Kohtoku, Y.; Kumagawa, K.; Yamamura, T.;Nagasawa, T. Nature, 1998, 39(1): 773

共引文献38

同被引文献82

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部