期刊文献+

空气阴极生物燃料电池电化学性能 被引量:31

Electrochemical Performance of Microbial Fuel Cell with Air-Cathode
下载PDF
导出
摘要 为提高生物燃料电池(MFC)的输出功率,降低内阻和有机物处理成本,实验以空气电极为阴极,泡沫镍(铁)为阳极,葡萄糖模拟废水为基质构建了直接空气阴极单室生物燃料电池,考察了电池的电化学性能.结果表明,MFC的开路电压为0.62V,内阻为33.8",最大输出功率为700mW·m-2(4146mW·m-3污水),电子回收率20%.放电曲线、循环伏安测试表明,MFC首次放电比容量和比能量分别为263mAh·g-1COD(化学需氧量)和77.3mWh·g-1COD,MFC充放电性能及稳定性均较好.电化学交流阻抗谱(EIS)分析表明,随放电时间的延长,电池阻抗增大,这是导致电池输出电压逐渐降低的原因之一.MFC运行8h,COD的去除率为56.5%,且COD的降解符合表观一级反应动力学. In order to promote the energy output of microbial fuel cell (MFC), reduce the internal resistance of MFC and the cost of processing organics, a direct-air cathode single-chamber microbial fuel cell was constructed by using air electrode as cathode, foamed nickel (ferrumiron) as anode and glucose as the anode fed. The results demonstrated that the open circuit voltage reached 0.62 V, the internal resistance of the cell was 33.8Ω, the maximum power density reached 700 mW·m^-2 (4146 mW·m^-3), and the electron recovery was 20%. The discharge curve and cyclic voltammetry tests revealed that the first discharge capacity and energy density were 263 mAh·g^-1 COD (chemical oxygen demand) and 77.3 mWh·g^-1 COD, respectively. The charge-discharge performance and stability of MFC were pretty good. The electrochemical impedance spectroscopy analysis demonstrated that the cell impedance increased with the increase of discharge time, which was one of the reasons resulting in the decrease of output voltage. The degradation rate of COD (chemical oxygen demand) reached 56.5% after it operating for 8 h. The degradation of COD followed the first order reaction model.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第6期1063-1067,共5页 Acta Physico-Chimica Sinica
基金 黑龙江省科技攻关项目(GC07A305)资助
关键词 微生物燃料电池 空气阴极 功率密度 电化学性能 Microbial fuel cell Air-cathode Power density Electrochemical property
  • 相关文献

参考文献20

  • 1Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R. Science,2002, 295:483.
  • 2Rabaey, K.; Ossieur, W.; Verhaege, M.; Verstrate, W. Wat. Sci. Technol., 2005, 52:515.
  • 3Bond, D. R.; Lovley, D. R. Appl. Environ. Microbiol, 2003, 69:1548.
  • 4Liu, H.; Ramnarayanan, R.; Logan, B. E. Environ. Sci. Technol., 2004, 38:2281.
  • 5Rodrigo, M. A.; Cafiizares, P. J.; Lobato, J.; Paz, R.; Saez, C.; Linares, J. J. J. Power Sources, 2007, 169:198.
  • 6Min, B.; Logan, B. E. Environ. Sci. TechnoL, 2004, 38(21): 5809.
  • 7Liu, H.; Cheng, S.; Logan, B. E. Environ. Sci. Technol., 2005, 39(2): 658.
  • 8Cheng, S.; Liu, H.; Logan, B. E. Electrochem. Commun., 2006, 8 (3): 489.
  • 9Oh, S. E.; Min, B.; Logan, B. E. Environ. Sci. Technol., 2004, 38(18): 4900.
  • 10Fan, Y.; Hu, H.; Liu, H. J. Power Sources, 2007, 171(2): 348.

二级参考文献66

  • 1莫志军,胡林会,朱新坚.燃料电池广义内阻的在线测量[J].电源技术,2005,29(2):95-98. 被引量:13
  • 2SANTI E, FRANZONI D, MONTI A, et al. A fuel cell domestic uninterruptible power supply [A]. Proc Applied Power Electronics Conference (APEC'02) [C]. Dallas, Texas: IEEE, 2002:605-613.
  • 3SUSAI T, KAWAKAMI A, HAMADA A, et al. Development of a 1 kW polymer electrolyte fuel cell power source [J]. J Power Sources, 2001, 92: 131-138.?A
  • 4SCOTT K, TAAMA W M, ARGYROPOULOS P. Engineering aspects of the direct methanol fuel cell system [J]. J Power Sources,1999, 79(1):43-59.
  • 5REN X, ZELENAY P, THOMAS S, et al. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory [J]. J Power Sources, 2000, 86(1-2): 111-116.
  • 6HOGARTH M P, RALPH T R. Catalysis for low temperature fuel cells PART Ⅲ:Challenges for the direct methanol fuel cell [J].Platinum Metals Rev,2002,46(4): 146- 164.
  • 7WASMUS S, KUVER A. Methanol oxidation and direct methanol fuel cells: a selective review [J]. J Electroanal Chem, 1999,461 (1-2):14-31.
  • 8THOMAS S C, REN X M,GOTTESFELD S, et al. Direct methanol fuel cells: progress in cell performance and cathode research[J].Electrochim Acta, 2002,47(22-23):3 741-3 748.
  • 9SHUKLA A K, JACKSON C L, SCOTT K, et al. An improvedperformance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions[J]. Electrochim Acta,2002,47(21):3401-3407.
  • 10JARVI T D, PATTERSON T W, CIPOLLINI N E. Recoverable performance losses in PEM fuel cells[A]. The Electrochemical Society Meeting, Abstracts[C]. Paris, France:2003. Abstract 1 211.

共引文献222

同被引文献468

引证文献31

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部