期刊文献+

Monte Carlo Study on Spontaneous Recoil of Confined DNA Chain

Monte Carlo Study on Spontaneous Recoil of Confined DNA Chain
下载PDF
导出
摘要 长 DNA 链的部分被一个电场驾驶进限制环境,当剩余的留在高熵的区域时。在这个领域的移动之上,链自发地撤退到高熵的区域。这个动态过程被蒙特卡罗模拟调查。模拟复制 DNA 链的 recoil 是开始慢的并且逐渐地由于 confinement-entropic 力量的存在处于速度增加的试验性地观察的现象。结果与增加尺寸或减少显示出那 DNA 链的 recoil 速度将增加的 nanopillars 的间距。进一步的分析建议典型的熵与在监禁的免费部分的区域部分每在监禁的单体成正比。 A part of a long DNA chain was driven into a confined environment by an electric field, while the rest remains in the higher-entropy region. Upon removal of the field, the chain recoils to the higher-entropy region spontaneously. This dynamical process was investigated by Monte Carlo simulations. The simulation reproduces the experimentally-observed phenomenon that the recoil of the DNA chain is initially slow and gradually increases in speed due to the presence of the confinement-entropic force. The results show that with increasing the dimension or decreasing the spacing of the nanopillars the recoil velocity of the DNA chain will increase. Further analysis suggests that the characteristic entropy per monomer in the confinement is proportional to the area fraction of the free part in the confinement.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2008年第3期281-285,共5页 化学物理学报(英文)
关键词 DNA链 自发回弹 MONTE CARLO模拟 有效熵 DNA chain, Spontaneous recoil, Monte Carlo simulation, Effective entropy
  • 相关文献

参考文献30

  • 1B. Alberts and D. Bray, Molecular Biology of the Cell, New York: Garland, (1994).
  • 2F. Jahnig, Proc. Natl. Acad. Sci. USA 80, 3691 (1983).
  • 3U. K. Laemmli and M. Favre, J. Mol. Biol. 80, 575 (1973).
  • 4M. Akeson, D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer, Biophys. J. 77, 3227 (1999).
  • 5J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Proc. Natl. Acad. Sci. USA 93, 13770 (1996).
  • 6I. Szabb, G. Bathori, F. Tombola, A. Coppola,I. Schmehl, M. Brini, A. Ghazi, V. De Pinto, and M. Zoratti, FASEB J. 12, 495 (1998).
  • 7B. Hanss, E. Leal-Pinto, L. A. Bruggeman, and T. D. Copeland, Proc. Natl. Acad. Sci. USA 95, 1921 (1998).
  • 8O. B. Bakajin, T. A J. Duke, C. F. Chou, S. S.'Chan, R. H. Austin, and E. C. Cox, Phys. Rev. Lett. 80, 2737 (1998).
  • 9J. Han, S. W. Turner, and H. G. Craighead, Phys. Rev. Lett. 83, 1688 (1999).
  • 10T. T. Duong, G. Kim, R. Ros, M. Streek, F. Schmid,J. Brugger, D. Anselmetti, and A. Ros, Microelectron Eng. 67-68, 905 (2000).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部